PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996

Brownian motion of interacting nonspherical tracer particles: General theory
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A general theoretical framework is developed to describe the tracer-diffusion properties of nonspherical
Brownian tracer particles that interact with the other particles in a multicomponent colloidal suspension of
generally nonspherical particles, in the absence of hydrodynamic interactions. Here we present the derivation
of the generalized Langevin equatid@LE) for the linear and angular velocity describing the Brownian
motion of the tracer particle. In addition to the dissipative plus the random force and torque exerted by the
solvent, this GLE contains the dissipative plus random force and torque due to the direct interactions with the
other particles. An exact and general expression is derived for the time-dependent friction tensor that embodies
the effects of the latter. Using a generalized Wertheim-Lovett's relation, this expression is cast in two alter-
native but equivalent forms. The long-time and short-time litinsreference to the structural relaxation time
7,;) are also discussefiS1063-651X96)06012-9

PACS numbsds): 82.70.Dd

I. INTRODUCTION this direction. Thus, we have carried out a progfdm-2Q
aimed at extending the GLE approach to describe the effects
Tracer-diffusion experiments in colloidal suspensionsof the interactions of nonspherical tracer particles with the
record the averaged properties of the Brownian motion obther particles of the host suspension, on ttaslational
individual labeled particles that do not interact among them-and rotational Brownian motion of the former, and in this
selves, but do interact with the many other unlabeled parpaper we start the systematic presentation of our results.
ticles of the host suspensipti]. One of the main goals of the In this paper we present the most general results of our
theory of colloid dynamics is to explain the observed tracerwork in the direction just described. Here we shall have in
diffusion properties in terms of the effective interactions be-mind the general situation involving a non-spherical Brown-
tween colloidal particles and/or in terms of the equilibriuman tracer particle tharanslatesand rotateswhile interact-
static structural properties of the suspendidh Among the  ing with other diffusing particles that may also be nonspheri-
various theoretical approach¢$-5] proposed to achieve cal, and may belong to more than one species. For the time
this goal, the generalized Langevin equati@LE) approach  being, however, we shall not consider hydrodynamic inter-
[5] has proved to be one of the most successful in terms of itactions. The main contribution of the present paper is the
applications to systems that depart from the particular casgerivation of a generalized Langevin equation for the linear
corresponding teelfdiffusion in monodisperssuspensions and angular velocity of the tracer particle. The effects of the
of sphericalcolloidal particleswithout hydrodynamic inter- interactions with the surrounding particles is embodied in a
actions. Thus, this theory has been applied to rather diverséme-dependent friction tensor, for which an exact expression
phenomena and systems such as electrolyte friction effecis derived in terms of the static properties and of the time-
on charged colloidal particlg$—9], tracer diffusion in dilute  dependent correlation function of the local concentration of
but highly interacting colloidal mixturgsl0,11], in hydrody-  such particles. Without yet introducing approximations or
namically concentrated hard-sphere suspengib®isin two-  restriction to particular cases, here we discuss and collect a
dimensional[13] and quasi-two-dimensiondll4] suspen- number of results of a general nature, and analyze some per-
sions, and even in model porous mefli&,16. All of these  tinent asymptoti¢short- and long-timelimits. Although this
applications, however, are restricted to thanslational  will prevent us here from presenting the results of concrete
Brownian motion ofsphericaltracer particles, which interact applications, the idea is to separate what is completely gen-
with other particles that are also assumed spherical. The onlyral and exactalthough at the same time completely forjnal
extension away from this restriction refers to the descriptiorfrom what is the result of approximations and restrictions to
of electrolyte friction effects on thieanslationaldiffusion of  particular or generic cases or conditions. In the accompany-
a nonspherical polyiof9] whose rotation, however, was ig- ing paper([20], hereafter referred to as papey, lhowever,
nored. Since the technical capabilities exist to observe inve illustrate how these general results can be converted into
experimental or computer simulated systems ribtational  an approximate but still general theory in the context of a
dynamics of interacting nonspherical tracer particles, there imore restrictedalthough still quite relevahtgeneric case,
an obvious need to extend the theory of colloid dynamics imamely, that in which only the tracer particle remains non-
spherical, but all the other particles are assumed spherical.
For this generic case concrete applications will become pos-
* Also at Departamento de $ica, Centro de Investigacioy Estu-  sible and practicable, as paper Il will illustrate.
dios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F., In order to explain the general program of the present
Mexico. extension to suspension of nonspherical Brownian particles,
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in the following section we provide a brief review of the ¢° being the stationary hydrodynamic friction coefficient.
structure of the GLE theory of tracer-diffusion phenomena asrom Eq. (1) we have that (V(t)-V'(0))

it was developed in the context of suspensions of sphericak (3kgT/M)exp(—t/7g), with 7g=M/{°. This defines the
particles. We then writéSecs. lll and IV the basic equa- ‘“Brownian” relaxation timerg. Eq. (1) describes the relax-
tions on which we build our extension. The main results ofation of both the velocity and the displacement of the patrticle
this paper are derived and discussed in Sec. V. General r€29]. In this paper we shall only be concerned with the so-
sults relevant to the long- and short-time regimes are disealled diffusive regimet> 75, i.e., that in which the veloc-
cussed in Secs. VI and VII. In preparation for paper Il, inity has relaxed by hydrodynamic friction, so that we can
Sec. VIIl we summarize the main results of this paper as thewrite (V(t)-V'(0))=(kgT/M)%25(t). In this regime, the
apply to the generic system referred to above. Section IXdnean-squared displacement, for example, is given by

summarizes our conclusions. ([AR(t)]?)=6D", with D°=kgT/{°.
In the presence of direct interactions between the tracer
Il. THE GLE THEORY FOR TRACER DIFFUSION particle and the other colloidal particles in the suspension
OF SPHERICAL PARTICLES (but ignoring hydrodynamic interaction€q. (1) is modified

) ) ) ) by the addition of the total direct fordg(t) that the other
In this section we review the most salient concepts ar‘Ug)articles exert on the tracer. The GLE theory starts by notic-
results of the generalized Langevin equation description ofng thatF,,(t) can be written exactly as a linear function of
the effects of the direct interactions betweersgherical  the departuresn(r,t) of the instantaneous local concentra-
tracer Brownian particlgsometimes referred to simply as on profile n(r,t) of the other particles around the tracer,

“the tracer”) with other interacting Brownian particléalso  om its radial equilibrium average®{(r), so that Eq.(1)
assumed spherigatiiffusing around it. The GLE theor}s] [, reads

that we review here, and that we extend in this paper, only

refers to the effects of these direct interactions on the trans- dv(t)

lational Brownian motion of the tracer particle, which may M —:—gov(t)+f°(t)+J d3r[Va(r)]on(r,t),
be identical (“self-diffusion”) or different (“tracer- dt

diffusion”) from the surrounding particles. The Brownian (2)

motion of an isolated tracer particle of maddsis described

by the ordinary Langevin equation with ¢(r) being the pair potential between one of the sur-

rounding particles located at positiorand the tracer particle
dv(t) located at the origin, and where
M g =~ VO +), @)
sn(r,t)=n(r,t)—nqr). 3
for its velocity V(t). Here /% is the hydrodynamic friction
coefficient, and°(t) is a random force, modeled as a Gauss-' " ) X ; ,
ian s-correlated(white) noise, with zero mean and time- variable 5n(.r,t), for which a t|me.—evolut|on equa.t|on must
dependent correlation function given by the fluctuation-then be written. Such an equation, together with E2),
dissipation relatioqfo(t)f°"(0)) = kg T£%25(t)1, wherel is constitutes a pair of coupled.sto-chastlc eql.Jatllon.s\/f(j])
the 3x 3 identity diad anckg, T, and &(t) are Boltzmann’s and én(r,t), whose co_ntractlor[l.e., the elimination of
constant, the temperature, and Dirads function. From  on(r,t)] leads to the main result of GLE theory, namely, the
these assumptions, all the statistical properties of the velocit§€neralized Langevin equation for the tracer particle, which
V(t) and the displacememR(t)=[{V(t")dt’ of the par- reads
ticle can be determinefR1]. Furthermore, the equivalence

_Thus, V(t) couples dynamically only with the collective

between the description of these statistical properties on the dv(t) = — OV(t) + 1)

basis of Eq.(1) and that provided by the corresponding dt

Fokker-Planck equation is also well established. Let us men- .

Fion, however, that Eq(l) assumes that 'ghe .sollver]t reacts +J dt' AZ(t—t V(L") +F(1). (4)
instantaneously, so that the hydrodynamic friction is instan- 0

taneously proprotional t&(t). In reality, the finite-time re-

sponse of the solvent leads to memory effects, whose dén this equationF(t) is a fluctuating force deriving from the
scription requires the replacement of the terng®V(t) in spontaneous departures from zero of the net direct force ex-
Eq. (1) by —fggo(t—t’)V(t’)dt’. In this case, it is not pos- erted by the other particles on the tracer. It has zero mean,
sible to write a corresponding Fokker-Planck equation, sincdut it is non-Markovian, and satisfies the fluctuation-
the stochastic proced4(t) is no longer Markovian. Never- dissipation relation F(t)F'(0))=kgTAZ(t)1. The memory
theless, the generalized Langevin equation that results frofiunction AZ(t) contains the dissipative friction effects de-
this replacement still allows us to write a fluctuation- rived from the direct interactions of the tracer with the par-
dissipation  relation [now reading (f(t)f°T(0)) ticles around it. Its relaxation time is determined by the
=kgTZ(t)1], and to express the velocity autocorrelation structural relaxation of the cage formed by the surrounding
function in terms of the time-dependent friction function particles, and is characterized by the timewithin which
£0(1). In this work, however, we shall not be interested inthe particles diffuse a mean distance between them. In
this relaxation process, so we assume #P4t) can be ap- general,r;> 5. Thus, in the diffusive regimet$ rg) there
proximated, as required in E@L), by (°(t)=¢%248(t), with  is a time-scale separation in referencerfo “Long times”
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meanst> 7, , while “short times” meang<<r, (but still in  several species will be considered at the end of Sec. V, since
the diffusive regime, i.e., such thé¥ 75). At short times, it is only a matter of careful and adequate notation.
the effects of the interactions involved i¢(t) are still not Let V(t) and w(t) be the linear and angular velocity of
perceptible, and the movement of the tracer is essentially fretie tracer particle defined with respect to the laboratory. The
diffusion. On the other hand, at asymptotically long times,vectorsV(t) and w(t) can be written in terms of their com-
the functionA/(t) can be approximated by a Diratfunc-  ponentsprojection$ along the axis of a given reference sys-
tion (Markovian limif) times the time integral of 2/(t),  tem whose origin and orientation are fixed with respect to the
that is, Eq.(4) can be rewritten just as Eql), but with ¢° laboratory. Such a description ¥f(t) andw(t) is, however,
replaced by the total friction coefficient given by not the most convenient for our purposes. Let us consider
{=¢%+A¢, with A¢ given by A¢=[3A{(t)dt. Thus, the instead the projections df(t) and w(t) along a coordinate
long-time diffusion coefficienD" is given by the Einstein System whose origin is certainly fixed to the laboratory, but
relationD-=kgT/({°+A¢). The determination oA ¢, or its whose orientation changes with time, and in fact, follows
dynamical extension {(t), is precisely one of the main pur- instantaneously the orientation of the main symmetry axis of
poses of the theories of Brownian motion of interacting col-the tracer particle. Within this description, the extension of
loidal particles. Eq. (1) above to an isolated nonspherical Brownian particle
This being a typical many-body problem, such theoriegeads[23]

cannot be but approximate. First, however, the GLE theory
[5] leads to the following exact and general expression for dv(t) _ 0 _ 0

V() = g o(1)

AL(t): M T+w(t)XMV(t):
+10(t), 7
Ag(t)ngr“' d3rf d3r'[Vy(r)]

deo(t)

g TOOX[-et)]=—Crr V(D) ~ R o(t)

><(5n(r,t)5n(r’,0))[V’¢//(r’)]}. (5)
+10(t). ®
The van Hove function{én(r,t)sn(r’,0)), is the time- ) ) , . .
dependent correlation function of the fluctuations of the locall "€Se are just the equations of motion of a rigid body in the
concentration of the surrounding particles. In this function allféference system just decribed, in which the tensor of inertia
the information about the relaxation by diffusive processed IS diagonal[24]. Thus, Eq.(8) is the well-known Euler-
of the cloud of particles around the tracer resides, and it i$2ngevin equation for a rigid body. The kinematic terms on
here where important approximations must be made, befor’é‘? left-hand side also derive from the particular choice of
the exact and general result of E@) may be useful in this reference system. However, they are quadrativ/(if)
practice. There exists a variety of approximations that lead t@nd «(t), and, hence, must be neglected in building up a
a diversity of approximate expressions fag(t). For the linear theory[25,2§ for the fluctuations of these quantities

purpose of illustration, we quote here one of the simplesf"_round their vanis_hing equilibrium value. The right-hand
approximate expressiorid?] derived in this way for self- side of these equations thus expresses the total force and total
diffusion, namely torque on the tracer particle. In the linear regime the friction

force and torque must in general be linear in all the compo-
nents ofV(t) and w(t). The proportionality constants are

,  (6) grouped in the translational-translatiof@lT), translational-
rotational (TR), RT, and RR 3X3 friction tensors

Ag(t)=

kBTnf L [kh(K)]2 [ —2k2D%
g7 1+nhk) “H1+nhKk)

whereh(k) is the Fourier transforntFT) of the total corre- ggT(EE)), r, %, R(=0%), respectively. Finally,
Iati.on function[22] h(r)=g(r)—1 with g(r)fne"(r)/n, n fO(t) and t°%(t) are the corresponding random force and
being the bulk concentration of the suspension. Approxmat(?orque’ respectively, assumed Gaussian, ancorrelated,

expressions SUCh."."S this are generalz in the Sense that h zero mean, and time-correlation function given by the
have_ not yet SpECIf.I(?d the pair Interaction poteriel). lts .following fluctuation-dissipation relation:
application to specific systems may involve, however, addi-

tional approximations, which are not of a dynamic nature,

but which refer to the precise calculation bfr), given (FODOT0))  (Fo1)t°1(0))
(r). Reference$5]-{16] illustrate the application of these OreveOt OrereOt
general results to a variety of specific systems and condi- (EOFT0))  (F(D7(0))
tions.
lll. LANGEVIN EQUATION FOR AN INTERACTING go g$R
NONSPHERICAL TRACER =kgT 26(1). (9
The general system we have in mind consists of a volume o

V, containing the solvent in which a labeled tracer particle,
plus N other colloidal particles of the same speciei of  Strictly speaking, these relations cannot be satisfied by Egs.
them in general nonspherigadre suspended. The case of (7) and(8). This is so because these are nonlinear equations,
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due to the termso(t) X V(t) andew(t) X[ |- w(t)]. However, It is worth emphasizing that, within the condition of the ab-
as indicated before, the linearization of the transport equasence of hydrodynamic interactions, there exists no addi-
tions describing spontaneous fluctuations of the dynami&ional approximation in writing Eqs(15) and (16) for an
variables around their equilibrium values is a key aspect innteracting tracer. Let us also mention that, within the con-
the general theory of equilibrium time-dependent fluctuatext of the theory developed here, the hydrodynamic friction

tions 25,26 The assumptions above concerniifgt) and coefficientst® are considered phenomenological coefficients,

t°(t) are enough to characterize completely the StOChaStigssumed to be given, and in terms of which, among other

proces.s[V(t),w(t)]_, which then turns OUt.tO be stationary, things, we will have to express the final effects of the direct

Gaussian, Markovian, of zero mean and time-dependent cor- N

relation function given by interactions represented in E(L5) by the “force” F(t)
that the other particles exert on the tracer.

N _ ~M~L %7 M~ kaT 1 L(_at us now write Fioi(t) in terms of the collective qy-
(VOVI(0))=Texnl l s (10 namical variable that represents the local concentration of
where we have introduced a compact notation in terms of th@articles. We assume that the total enetgyof the direct
six-component vectors interaction between the+1 particles of the system is pair-
wise additive. Therefore, the forces and torques are also pair-
= V(t) = £0(1) wise additive. Thus,
VIO=| )| FO=| o) | 11 N
Fa)=2, I, (17

and of the <6 matrices
that is, the total force on the tracer is the sum of the forces

N M1 O N 2) é“?re Fi(T) that theith particle {=1,... N) exert on the tracer

M=| ot ||, ¢°= (120  (denoted by the index T”). It can be showrithird law of
T Newton thatF{" = —F{) whereF{" is the total force on the
¢RT 4R ith particle due to its interaction with the tracer particle.

- Thus, the total direct force on the tracer particle can be writ-
(i.e., Mjj=M;g;;, with M;=M fori=1,2,3, andM;=1; for ~ ten as
i=4,5,6, withl,, I,, I3 being the principal moments of
inertia) and N
Folt)=— 2, F{'. (18)
- (VIOVT(0)) (V(D)w'(0)) o

VOVTOY —
(V(HV'(0))= (o(1)VT(0)) (w(t)w'(0)) |- 13 n the same way, it can be shown that the total torque on the
tracer due to its direct interactions with theparticles, can

We now may use this compact notation to rewrite Eqs.be written as

(7)—-(9) (which describe the Brownian motion of a freely N

diffusing nonspherical tracer partiglbut now including the - _ (i

direct interactions of this tracer particle with other Brownian Tl t) Z’l T 19
particles diffusing around it. In the absence of hydrodynamic .

interactions, the Brownian motion of the tracer particle iswhereTQ is the total(orbital plus intrinsig torque on par-
still described by Eqs(7) and (8) to which we add, respec- ticle i due to its direct interaction with the tracer particle.
tively, the instantaneous total direct forég,(t) and total Let us now expres${) and T{" in terms of the pair
direct torqueT(t) that those other particles exert on the interaction energy between the tracer particle andithe
tracer. Grouping togetheF,(t) and Ty(t) in the six- particle. For this purpose, we express this pair interaction in

component vector terms of positions and orientations of all the particles re-
ferred to a reference system fixed to the tracer particle. Thus,
= Fro 1) the location of particlei will be denoted by the position
FolO={ To(t) | (14 vectorr®, whose origin is fixed at the tracer's center of
mass(c.m), and the orientation of the same particle will be

determined by a set of three angular variables
Q),09,08)=0" describing the orientation of the prin-
- cipal axis of that particle relative to the principal axis of the
= dV(t) & = = = tracer particle. The variableQ,, ,, and(Q; may be the
Tz—go V(1) + (1) + Fo(t) (15 Euler angles of the corresponding rotation, or any other
equivalent description. Obviously, the tracer’s position and
orientation in this coordinate system remain consfaw
assume, in factt("=0, and ("'=(0,0,0)]. Thus, the pair
= = P interaction energy of the tracer particle with another particle
(fO(t)f97(0))=kgTZ024(1). (16)  located atr, and with orientatiorf), will only depend onr

Egs.(7)—(9) will now read, in our compact notation, as

and
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and(?, and will be denoted by/T(r,(T). Thus, we now can 5 —
expressF{) and T{) in terms of the linear and angular gra- Ttot(t):J d ff dQf r XV y(r,Q)

dients of g+ (r, Q") in the following manner:

— AYr(r, Q) —
_ A (r® QM) —I—M -n(r,Q;t). (26)
F(l)_ _ T 9
L ¢
=—VWOyr(r®,00) (200  We now come back to Eq15), and write it, in the compact
notation introduced before, as
and
TO — ()5 g 4 T 21 = dV(t e = =
T r T ’ ( ) M - di):_ézo 'V(t)+f0(t)

whererx F{) is the orbital torque on particiedue to the

force F{ on its center of mass, capable of producing a trans- 5 —= — —
lation around the tracer's CM. The intrinsic torq@i€) can +f d rf dOLV gr(r, Q) In(r, 1),
be denoted as

_ (27
. ay(r®,00)
Th=—| ———, (22 i
( Py with
which means that if particlé rotates with an infinitesimal ;_ v 28)
angular displacemerd$ of magnituded¢ in the direction B V ot
n, then, the change in the energy of its interaction with the
tracer is and
b\ -
dr=—|—=|-do, 23 d
I (&qb) ¢ 23 VrotErXV+£- (29

where ((MT/(?(Z) is merely a symbo[24]. Here we only
guote, for example, that for axially symmetric particles,
whose orientation can be defined by the component

Q;=u; (i=1,2,3) of the unitary vector along its axis, the : ) ) . o
| dientl 9 D/od dsl Y lective variablen(r,(;t) defined in Eq(25). This is an enor-
angular gradient dy(r,Q2)/d¢] now reads[di(r,u) mous simplification in our further development since we do

d¢] =UxX dyr(r,0)/90. Going back to Eq(18), and using  not need to be concerned about the details of the position and
Eqg. (20), the total direct force on the tracer can be rewrittenmotion of each and all individual particles. Instead, we will

Equation (27) tells us that the equation of motion of the
racer couples, in fact, with the positions and orientations of
e other particles surrounding it, but solely through the col-

as find that only the essential features of the time-evolution
o equation forn(r,;t) turn out to be important in determin-

N ag(r),00) ing the most relevant features of the effective equation of
FtoFE T motion of the tracer particldj.e., the generalized Langevin

equation forV(t), that we are aimed at derivihg

:j d3rJ d&T[leT(r,(T)]n(r,(T;t), (24) The dynamical variabla(LQ;t) depends on the instan-
taneous configuration®(t), QW(t) (i=1,2, ... N) of the
N particles around the tracer. Its equilibrium ensemble aver-

with age, denoted as°{r,Q)=(n(r,Q;t)), is, however, indepen-

dent of time, and has the following important property. Tak-

_ N o ing an ensemble average of H&7), we conclude that

n(r,Q;t)EEl sc—rDns@—ai), (25
i<

3 pee O\1ne o) —
being the instantaneous local concentration of particles at f d rf dOLV r(r. ) In*{(r.) =0, (30

position r and orientation(), respectively referred to the

c.m., and to the orientation of the principal axis, of the tracer. - =

In a similar fashion, we can rewrite the total tordlig(t) in ~ where use has been made of the fag(t))=(f°(t))=0.
Eq. (19), using Egs(21), (22), and(25), as Therefore, Eq(27) can be rewritten as
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Hence,

=0 V() +1ot) An(r,Q:t)=n(r,Q:t+At)—n(r,Q:t)

<3
I

=n(r+Ar,Q+AQ;t)—n(r,Q;t)

an —
-AQ+O(At)2
a0

that is, in terms of the fluctuationén(r,ﬁ;t) of the local = —[Vn(r,(T;t)]'(rXAJ))
concentration around its equilibrium value,

+f d3rJ dST[él//T(r,(T)]&n(r,(T;t),

a =[Vn(r,Q:t)]-Ar +

N &—EAZLOAH
aQ'aJ).(ﬁ (40

an(r, ;) =n(r, ;) —n{r, Q). (32
The next step is to write up the time-evolution equation for =[r><Vn(r,5;t)]-A<Z
this collective variable. o
an(r,Q;t) - )
IV. TIME EVOLUTION EQUATION + —5'5 ‘Ap+O(AL)“. 37

FOR THE LOCAL CONCENTRATION

Thus, we can write the rate of change rdfr,(T;t), due to

The time rate of change ai(r (1;1) is due to two funda- this infinitesimal angular displacement, as

mentally different mechanisms. The first is purely kinematic,
and is due to the fact that the positiorand orientatior{) in ﬁn(r,ﬁ;t)
n(r,Q;t) are referred to the reference system attached to the .
tracer particle. The tracer moves instantaneously with linear

velocity V(t), and rotates with angular velocity(t). Thus,
even if the other particles are kept fixédith respect to the
laboratory, n(r,Q;t) will change, due to the movement of
the tracer. To quantify this effect, imagine a displacement an(r,(T;t) = _ = an
AR of the tracer’s c.m., taking place without changing ori- =[Vn(r,Q;t)]-V(t)+ —) ,
entation in a time\t, such thalR=V(t)At. If the concen- I gy
tration profile at time is n(r,Q;t) at timet+ At the profile
should be the same as at timhebut with r displaced by

~o(t). (38

(rXV+ i) n(r,a;t)
d¢

Collecting the contributions in Eq$35) and(38), we finally
arrive at

at (39)

where the term d4n/dt) i represents the rate of change of

AR, that is . e
change inn(r,Q;t), namely, the diffusive processes that
n(r,Qt+At)= n(r+AR,(T;t). (33  change the local concentration according to a relaxation law
that we now discuss.
Hence, we can calculate the change\aif(r,Q;t) originated The term @n/dt) g in Eq. (39 refers to the change in
by the displacememR, as n(r,{;t) due to the(translational and rotationatliffusion of
L o o the particles around the tracer. Clearly, if the tracer itself
An(r,;t)=n(r,Q;t+At) —n(r,{;t) were not movingi.e., if V(t)=0], this would be the only
- n(r+AR,(T;t)— n(r,(T;t) mechanism fon(r,(;t) to change with time. In such a case,
. Eqg. (39 would be just the diffusion equation describing the
=[n(r,Q;t)]- AR+ O(AR)? change inn(r,Q;t) due to the translational and rotational

_ 0- 2
=[Vn(r.&]-V(HAL+O(AD~  (34) static field ¢ (r,Q2) produced by the immobile tracer par-

ticle. If, in addition, we were to neglect the effect of this field
of force, we would still need the most general diffusion
equation forn(r,Q;t). This, however, is in itself one of the

Therefore, the rate of change n(r,(?,t) due to this infini-
tesimal displacement, is given by

an(r,(T;t) — e . cer
—————=[Vn(r,Q;t)]- V(1). (35  faces(which involves, in fact, our tracer-diffusion phenom-
ot enon as a particular problemSuch a problem is not yet

n(r,€;t) due to the second fundamental mechanism for the

diffusion of the surrounding particles in the presence of the

most basic problems that the theory of colloid dynamics

completely solved, even in the more specific case of spheri-

Sirpilarly, if the tracer rotates by an angular displacement. particles(no rotational diffusion Thus, if we do not
A¢=o(t)At (without a displacement of its c.m.we find  want to commit to approximations or particular cases, we
that the concentration profile at tinte- At is the same as at have to write up the most general form of the diffusion equa-
time t, but with r displaced byArz—rXAq? and Q dis-  tion for n(r,Q;t), or, better, for the fluctuations
placed byAQ=(3Q/d¢)-A . Thus, on(r,Q;t), which is what we need in E431). In this regard,
_ _ the general principles of the linear irreversible thermody-
n(r,Q;t+At)=n(r+Ar,Q+AQ;t). (36) namic (LIT) theory of dynamic fluctuationg25,26 dictates
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the most general structure of the linearized version of Edy (r :r",Q':t), o(r,Q;r’,Q'), etc., in such a way that, for
(39) for on(r,Q;t). According to these principles, if the vari- example, Eqs(40) and(43) above can be rewritten still more

ablesV/(t) and on(r,Q;t) constitute the components of a €conomically as

multivariate stochastic process describing spontaneous fluc-

tuations around the thermodynamic equilibrium state, then ;sn(t 2 . t , . ,
such a stochastic process must satisfy a generalized Langevin — 5 ~L VN n®q]. V(t)— fodtgt—t )0 ~Oan(t")
equation with a very rigid structur7]. Equation(31), to-

gether with the linearized version of E(39), constitutes +h(1), (44)

such a generalized Langevin equation, expresdiigt)/dt and
anddén(r,Q;t)/dt as linear combinations of both variables

V(t) andén(r,Q;t). Due to time-reversal symmetry consid- m(t)hT(O»:';(t)- (45
erations, many of those linear couplings are ab$Bhtin
Thus, the inner product in these equations, indicated by
“O,” implies integration over the common position and ori-
Sgtatlon indices r(Q) of the corresponding vectors and/or
matrices, i.e., O” « “ [d3 fdQ.”

Unfortunately, no more can be extracted further from the
V(t) and én(r, Q; t). The result of this analysis finally leads principles of the LIT theory concerning the detailed structure
us to the conclusion that the most general time-evolutiorof the generalized diffusion kernél(t). Thus, it will be on

=
fact, the nonvanishing terms in the equationddf(t)/dt are
already exhibited by Eg31), and similar symmetry consid-
erations determine the absence or presence of the vario
possible terms couplingsn(r,Q;t)/at to the components of

equation forén(r,();t) can be written as this object where the most important approximations and
o simplifications will eventually have to be introduced. On the
on(r, ity = o o— = other hand,n®*qr,Q) and o(r,Q;r’,Q") are well defined
— o —LVnfnQ)]-v(y equilibrium static structural properties, amenable in principle
to statistical thermodynamic determination, starting from the
_Jtdt,J' dgr,j dEJ dgr,,J 4L pair pote_ntialdfT(_r,Q) between thg tracer _and_one_of the
0 surrounding particles, and the pair potentigr,Q;r’,Q")

— — — between two of those particles. Here, too, one may have to

X(r,Qr", Q5 t=t) e Hr' Q" Q") resort to approximations or simplifications, but for reasons
Yy T — that are not as fundamental, as in the casd @. As it
xon(r”,Q";t")+h(r,Q;t), (40) happensn®{r,Q) ando(r,Q;r’',Q') are in reality two- and
three-particle distribution functions, respective{gne of
them being the tracer partigleand their exact statistical ther-
modynamic determination may prove impossible in practice,
even with the assistance of computer simulations. Neverthe-
less, we shall continue our discussion without regard to these
eventual practical concerns, so as to keep our present discus-
sion at a formally exact level.
J o o _ In this respect, an interesting observation can be made,
d3r f dQ’

with a‘l(r,ﬁ;r’,@) being the inverse function of the static
correlation function

a(r,(T,r’,(7)5(6n(r,(7;0)5n(r’,(7;0)), (41

in the sense that

Q7|",S7)0'71(r’,(7;r",ﬂ") and it refers to a beautiful side product of the reasoning that

led us to Eq.(44) above. Clearly, the first term on the right-

=58(r—r"), hand side of that equation is just the linearization of the

streaming term in Eq(39), whose meaning and origin were
O— 0" discussed at the beginning of this section. Thus, this term in

8(Q—-Q"), (42 X ) ) .

Eq. (44) can be written exactly, attending to purely kinematic

considerations. However, in considering E¢$) and (31)

Or! O 4) i ; _
whereasL(r,(,r’,Q";1) is a generalized temporally, spa as a closed system of linear stochastic equations for the vari-

tially, and orientationally nonlocal diffusion kernéd gener- = _
alized “matrix” of Onsager coefficienish(r,Q;t) is a sta- able V(t) and én(r,€;t), we find that this nondissipative
tionary random term, originating from the random diffusion term of Eq.(44) is not independent of the other nondissipa-
fluxes. It has zero mean, and a time-dependent correlatioive coupling term appearing in this system of equations,
function given by the Onsager “matrixL(r,Q,r",Q';t),  namely, the force term in E¢31) (readlng[VgT] sn(t) in
according to the following fluctuation-dissipation relation: oy notation. These two terms are related to each other by a
— — - — very stringent symmetry conditiofb]. One can check that
(h(r, t)h(r’, Q")) =L(r,Q;r",Q";t=t").  (43)  such a symmetry condition is satisfied if and only if the

= =
To simplify the notation, let us indicate the convolutions in following relationship betweef\V ¢7] and[Vn®q holds:
the equations above as inner products between the “vectors”
and/or “matrices” on(t), n®, h(t), L(t), o, etc., whose

— -1
components are &n(r,(;t), n°Yr,Q), h(r,Q;t), [Vir]=—ksTa "O[Vn™. (46)



6580 M. HERNANDEZ-CONTRERAS AND M. MEDINA-NOYOLA 54

This, however, is nothing else but the generalization of arand
exact relationship betweanf? and o~, well established in

the statistical thermodynamic theory of inhomogeneous flu- = = to . ,

ids. The restricted version of this equation, referring to fluids F()=[Vr]Ox(1)Oén(0)+ fodt x(t=t")OR(t").

of spherical particles, is known as the Wertheim-Lovett re- (53
lation [28]. Notice that Eq.(46) can also be written, using _

Eq. (42), as F(t) is a linear function of the stochastic variabig(t) and

h(t), and it is, therefore, a stochastic force, with zero mean,

- - and time correlation function given by the following
eq — —
[Vn™]=—Bg O[Vir], (47) fluctuation-dissipation relation,
with B=1/kgT. These two exact relations will prove useful S .
fater on. (F(FT(0)=kgTAL(1). (54
V. CONTRACTION OF THE DESCRIPTION This relation can be demonstrated by using a thedr2h

that assures us that a contracted description stationary
_ _ _ = stochastic process is also stationary, provided that the static
evolution equations for the stochastic variabMgt) and  cross correlations between the remaining and the eliminated

on(t), namely, Egs(31) and(44). Together, these equations variables vanish. This is satisfied in our case, due to the
constitute a stationary process, and therefore, the stationarit

condition requires that the fluctuation-dissipation relations in
Egs. (16) and (43), coanIemented with the condition of in- an(t), which implies that(V(O)&g*(O)):O. On the other

=
dependence betweeR(t) and h(t), i.e., (F(t)h'(0))  hand, another general theorem establigias that the sta-
=0, to be satisfiedi27]. From these two time-evolution equa- tionarity of a linear stochastic process is a necessary and
tions we must now eliminatén(t), and this should lead us sufficient condition for the fluctuation-dissipation relation to
be satisfied. In our case, such a relation is precisely(&4.
Equations(51), (52), and (54) are the most fundamental

The main results of Secs. Ill and IV are the time-

ifferent time-reversal symmetry of the variabMét) and

=
to an effective equation involving only the variabit),

which is the GLE we wish to derive. Such a procedure con-res lts of this paper. From E¢51), the velocity autocorre-
stitutes what is referred to as the contraction of the descri u IS paper. ’ v ity au

P . i
tion [5,27]. Formally, we solve Eq(44) for n(t), and sub- lation functions, and other relevant time-dependent proper-

stitute in Eq.(31). The solution of Eq(44) cafi be written as ties, could in principle be derlied in terms of the components
of the solvent friction tensot® (which in our theory are
t = = considered externally determined phenomenological param-
on(t)=x(HOén(0)+ | dt’ x(t—t")O[Vn*]- V(1) . - i
- o - eterg and of the time-dependent friction tengbf (t). Thus,
+ ftdt’x(t—t’)Oh(t'), (48  AZ(t), which describes the additional friction effects on the
o = - tracer due to its direct interactions with the other particles,
now becomes the most important object, whose determina-

where x(t) is the solution of T . ; : oo
= tion is the immediate goal in any concrete application of our

dx(t) ftd O0-10 theory. For this reason, let us now focus our attention on Eq.
—— == t'L(t—t’ B t'), 49 ) < . )
Jt 0 L( )Og X(t) “9 (52), which expressed {(t) in terms of three objects: the
with initial condition pair potential yr(r,€}) (assumed known the equilibrium
concentration profile®{r,Q) (assumed caculable by statis-
x(0)=U (50) tical thermodynamic metho@isand the collective-diffusion

_ _ propagatory(t). The latter is defined as the solution of Eq.
[whereU(r,Q,r",Q")=46(r—r")5(Q2—Q")]. Hence,x(t) is (49 with initial condition given by Eq(50). Equation(49),
the Green'’s function of the generalized diffusion equation inin its turn, involves the static correlation matix(assumed
Eq. (44). Substituting Eq(48) in Eq. (31), we obtain calculable by statistical thermodynamic methodsnd the
collective-diffusion kerneL (t). Thus, in order to be able to
= use Eq.(52) eitherL(t) or y(t) must be provided. This will
< dv(t) EE) -\:/(t)+1?)(t) only be possible in an approximate manner, and the follow-

dt ing paper deals with this aspect of our theory. For the time
being, however, it is convenient to use the ex@¢ertheim-
t < = = Lovett's) relation in Eqs.(46) and (47) to derive two addi-
—jdt’Ag“(t—t’)-V(t’)+F(t), (51) ) gs{46) and (47)
0 tional equivalent expressions far (t), namely,
with - -
A1) =kgT[VN*IOa *Ox()O[n*", (55

AZ(t)=~[Vir]Ox()O[ VN 52 ng
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e = A “O" now implies Ezzlfd3rfd(7” With this understand-
AL()=BLVir]Ox(1)OaO[Vyr]'. (56)  ing, all the derivations and results in this paper extend to
multicomponent suspensions.

=4
Although these two expressions fax/(t) are formally VI. LONG TIMES
equivalent to the original result in Eq52), either of them Let us now write some results that may be useful when

may prove to be more convenient under particular condiyaficylar time regimes are considered. The generalized
tions. For example, if the static structural properti€$and Langevin equation that we have just derived, E5f), de-
o are more directly accessibleither theoretically or experi-

=
mentally) than the pair potentialr, then Eq(55) is a better scribes the relaxation &f(t) at all time regimes referring to

o the relaxation timerg of the tracer’'s velocity by hydrody-
starting point for the determination df £ (t). On the other namic friction. The relevant time scales in many experi-
hand, for softer and longer-ranged potentigds, Eq. (56)  ments, however, are associated with the direct interactions,
may be more useful. Let us also notice that the equivalencand are concerned with the relaxation time of the function

54

between Eqs(55) and(56) is only guaranteed as long as N0 A #(t). Leaving aside possible anomalous conditions in
approximation is involved that breaks the connection be- " © o )
tweenyr, n°, ando represented by Wertheim-Lovett's re- which A (t) does not@decay sufficiently fagtong-time
lation. In any other case, one should be prepared to findkils), the relaxation ofA {(t) defines a characteristic relax-
inconsistencies between results calculated from &) ation time, denoted ag (> 7g), such that for asymptotically

“« ; ; =
(that we shall refer to as the “concentration equatipwt long timest> 7, , the decay oM(t) can be described by a

from Eq. (56) (referred to as the “force equation" This  gimpler form of the generalized Langevin equation, in which
situation is similar to the inconsistencies found in the theory =

of liquids [22], when the same thermodynamic property is2 ¢ (t) IS approximated by

calculated from the energy, virial, or compressibility equa- i .

tions, using as an input an approximate radial distribution _

function. This will be illustrated in the following paper. In Ad(y=ag24(), 67
reference to the brief review in Sec. Il, let us notice that our e ]
main results in this sectidiEgs.(51) and(52)] correspond to  Where the tensoA £ (without temporal argumehts defined
Egs. (4) and (5) of Sec. Il. More precisely, Eq5) is the 35

particular version for spherical particles of the “force” equa- - -

tion [Eq. (56)]. To see this, notice that multiplying E¢44) Ar= JOCA Z(t)dt. (58)
by 6n'(0), andtaking the ensemble average, we get the 0

time-evolution equation for the van Hove function ) _
(on(r,Qt)sn(r’,Q',0)). This is just the time-evolution Using Eq.(57) in Eq. (51), we have the so-called Markovian

equation thaty(t) satisfies[since there are no correlations limit, in which the GLE becomes

between\:;(t) or h(t) with 8n(0)]. Thus, (sn(t)sn’(0)) =

differs from x(t) only in the initial condition[ y(t=0)=U oodviy < = 7

and (sn(t=0)sn"(0))=0], and hence,(sn(t)sn'(0)) M- =g =~ ¢ VO+ T, (59
=x()Og. Using this result in Eq(56), it should now be _

easy to recognize E@5) as a particular result of E¢56). with

To close this section on the most general results of our
theory, let us now go back to the begining of Sec. Ill, where D
we indicated that the consideration of a single species of {=0+AL, (60)
particles interacting with the tracer was only a convenient .
but nonessential simplification. At this point, however, it is @nd With
easy to indicate the way in which all our previous discussion
applies when we consider an arbitrary numbeof species
of particles around the tracer. This is possible due to our
compact notation, which allowed us to denote the f”nCtior‘%atisfying
n(r,Q,t), 4+(r,Q), etc., as the vectons(t), &7, etc. In the
multicomponent case, the species can be indicated by means = = -
of an additional index in all of these functions. Thus, we (f(t)£7(0))=kgTZ26(1). (62
speak ofn,(r,(;t) (¢=1,2,... p) as the concentration of
particles of speciex in (r,Q) at timet, of ¢,(r,Q) as the Thus, we see that in this limit, the description of the Brown-

ain (r, Q), etc. In this manner, wherever we integrate over"€ case of a free tracgEqgs. (7) and (8)]. In some experi-

common position and orientation variables, we should alsgNeNts this is the relevant time regime. In such a case, it is
sum over the common species index. Thus, the inner produenough to calculaté {. Integrating the general results for

A

?(t)zlj)(t)—klzé(t), (61
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A {(t) in Egs.(52), (55) and(56), we can find general ex- AR(t)=[;V(t’)dt’ from the equilibrium minimum, but the

; . cage has not yet evolved in time. This first-order effects are
ELZSEC;?S for . Note first that from Eqsi49) and(50), we also described by the GLE in E(1), which, to linear order

in t, reads
fo Qs(t)dtZgOlgfl, (63 -
< V(t)_ ﬁ(») = ﬁo & = =
whereg‘log=g, and M TS == V()+f2(1)—AZ(0)- AR(t)+ F(1).

(68)
EEJ L(t)dt. (64 _
0 Once againF(t) vanishes on the averadever all possible

. . =
Using Eq.(63) in Egs.(52), (55), and(56), we get the fol-  realizations ofF(t), i.e., over an ensemble of tracer par-
lowing three exact equivalent expressions for the static fricticles]. Without this last term, Eq(68) describes Brownian
tion tensorA?: motion of the tracer particle displaced from the local mini-

mum, by a displaceme®tR(t), and subjected to a “restor-

‘i': _ - oo + ing” force linear in A:R>(t). The spring constants of the cor-
ag [Vir]OgOL"O[VD™T, (65) responding harmonic potential are precisely the components
- - - of the initial value ofA £(t). From Eq.(68), we see that
A{=kgT[Vn*OL~*O[ V", (66) A Z(0) can be written, in terms only af; andn®® as
and o
A¢(0)=—[Vyr]O[ V", (69)
A{=BIVr]OgOL '0gO[Vyrl".  (67)

This quantity determines the very early deviatidup to

) ) ) t?), from its initial linear (free diffusion dependence of the
From these expressions, the seemingly most convenient one,

COn HIESE . . : ; ; A BT
in principle, is the “concentration” equation, E666), since, deneralized mean-squared displacem@®(t)AR'(t)) on
even though it depends dn it only involvesn®®, which is a time. If a well-defined separation of time scales exists for a

static property easier to determine than Once again, in given _systemgl.e., if t<), in such a way that the fr??'
later work we shall make use of some of these results. diffussion regimerg<<t<< 7, can be observed, then the initial

= =
linear behavior of AR(t)AR(t)) will determine the phe-
VIl. SHORT-TIME REGIME nomenological parameters involved il [since the corre-

=4
~ Letus now consider the regime opposite to that discussegponding short-time diffusion coefficienB® will be related
in the previous section. We recall that for short times we <

refer to the regime<r,, but still in the diffusive regime to (¢°)~']. In addition, the very early departure from this
t>75. To zeroth order int{7,), x(t)=U, and the memory short-time, or free diffusion regime will appear at ord@in

term_ i.n the generqlized L_angevin equation in E§1) is (AE(t)AET(t», and will be related toﬁ?(O). How useful
negligible. Thus, this equation only differs from E¢#) and  these observations can be in practice will depend, of course,
(8), which describe free diffusion, by the additional term on the particular system and on the specific experimental

= = . .
F(t=0)=[V7]O48n(0). This is the total force that the approach employed to monitor the averaged motion of the
surrounding particles exert on the tracer for a given initialtracer particles. In principle, light scattering or video micros-
configuration. On the average, however, this total force vancoPy could be tunned to measure those short-time properties
ishes, since(sn(0))=0. Thus, in this regime the tracer (as has been the case_for spherical part)clbsthe most
moves, on the averagever initial configurations of the sur- 9general case, however, it may be that the experimental mea-
rounding particles as a freely diffusing Brownian particle. Surement records time-dependent correlation functions dif-
The fact that the averaged effect of the direct interactiongerent from<AE(t)A§T(t)>’ which is defined in terms of
vanishes at short times can be interpreted saying that in this . o i _ .

regime, a “representative” tracer particle undergoes localY (1), which, in its turn, is best described in the reference

Brownian motion at the local minimun of the field of force rame with orientation following the tracer particle’s orien-

exerted by the average “cage” of the surounding particles,tation- Thus, additional work must be made to find the ap-

described by the equilibrium profilg®®=(n(0)). Thus, as propriate connection betwe:e>n the:measurabI:e tin;e-dependent
long as the tracer particle does not displace itself from thisorrelation functions andAR(t)ART(t)), or (V(t)V(0)").

local minimum, we have free diffussion. The very initial In the meanwhile, computer simulations should provide a
effects of the direct interactions on the tracer’'s motion occuuseful test of the general scenario for the short-time diffusion
at first order in {/ 7;), where the tracer has displaced itself by properties just described.
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Of course, computer simulations, light scattering, or videdracer interacting with other nonspherical particles of a mul-
microscopy are also in principle capable of describing theicomponent suspension. In order to apply these results to
dynamics at a time regime beyond the one just described, i.epncrete systems, it is convenient to retrict ourselves to sys-
at timest~ 7, . For this intermediate regime, the short-time tems that present some of the complexities, but not all, that
expansion is no longer useful, and the full time dependencare involved in the most general case. One possibility is to
consider a generic system with a higher degree of symmetry
én the interparticle interactions. The simplest such generic
that will be defined in the following paper. Recalling, how- system corresponds to thgt in which only .the tracer part!cle
ever, that in the context of suspensions of spherical particle[sema',nS nonspherical, wh|Ie. the oth.er partltlesl aﬁ? spherical.
a very useful strategy4] has been to approximate by an BY this we mean that the interactiam,(r,{;r",Q") be-
exponential function the memory function corresponding estween two of the lattefof speciesr,5=1,2, ... ») does not
depend on their orientation@ and ', and that the pair
- - - potential 4r+(r,{)) between the tracer and one of those par-
result for A {M)(0)=[dA {(t)/dt],—o. From A{(0) and ticles of speciesr does not depend on the orientation of the
A‘z(l)(o), such a simple approximation fdr?(t) could be latter, but only on its relative posit'ion With. respect to the
defined. From Eq(52), we have that center of mass of the tracer, Who(sﬁe(ed)_ orlentauc_m, how-

ever, does matter. Thus, for this generic system,
. Uag(r 1", Q" )=, —r|) and g, (r, Q)= ¢7,(r), and
A{D(0)=~[Vi]OxM(t)O[ V", (70)  the local concentration profile®{r,() is also independent
of Q, and can be written asi{r,Q)=nS{r)/Q where

54
sentially to A £(t), it is worthwhile to indicate a general

and from Eq.(49) we find that Q=[dQ. In general we have implicity assumed that
dy(t) nt{r,Q) is normalized in such a way that
l(l)(t)z(zfj_t) =L%¢7 1, (70 fdrfdOnfY(r,Q)=N,, such thatN, is the total number of

X =g = 2

particles in volume V, and that in the bulk
nqr,Q)=n,/Q, with n, being the bulk concentration

where we have assuméextending what is well established . . o
n,=N,/V of speciesx. In addition, for similar reasons, we

in the context of spherical particlethatL(t) has a tempo-

rally local termL%246(t), such that must have that o(r,Q;r’,Q")=o(r,r')/Q?,  whereas
% o a (i, Q) =0 A(r,r")/IQ% and x,u(r,Qir’ Q')
L(t)=L28(t)+AL(t), (72 =yau(rriDI02

With this understanding, it is not difficult to see that all

whereAL (t) embodies the dynamic effects of the direct in- the results in this paper are to be read, for this generic sys-
teractions among the particles of the suspension. At thigem, just as they are, provided that fgf, n®% o, and
point, these results constitute another aspect of our preseg{t) we understand the vectors and matrices with
general discussion. We expect that they will be useful inorientation-independent  componentsyr,(r), n,(r),
further developments of the present theory, which might pare,5(r,r'), and x,g(r,r’;t), and that the inner product
allel those that occurred in the more restricted case of sus-O” only indicates “=’_,fd%.” In addition, since

pensions of spherical particles. [agr(r,Q)10¢]1=[InYr,Q)/d]=0, the operatolV g, is
just V,,.=rXV. As a result, for this generic system, al-
VIIl. A RELEVANT GENERIC SYSTEM though the GLE in Eq(51) exhibits no notational modifica-

Besides being exact, in the sense that we have not yé'ton’ the otr;er main results of this paper, namely, the expres-

introduced approximations iny(t) [or, equivalently, in sions forA{(t), can be written in a simpler manner. For
L(t)], our results are also still general. Thus, they shouldexample, the “concentration” and the “force” equations in
apply to the general condition involving a nonsphericalEgs.(55) and(56) now read, respectively,

=Y V1
Ag(t):kBTJ dsflJ d3r2f d3r, ryxXVj N®ry) |0 H(ry,r)x(ra,r3)[(V3,rsX Va)n®iry)], (73
and
. 21
Ag“(t):Bf dg"lf darzf d3r; ryxX V| #1(r) | x(re,rai)o(ra,ra)[(Vs,rsX V) gr(rs)]. (74
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These are the results from which we shall start our discussiothese general results simplify when particular restricting
in the following paper on the application of our theory to this symmetries are introduced in the definition of a generic sys-
generic system. Once again, these results are still exact, bteém. While the following paper, that deals with such generic
they are the most general only in the context of the generisystem, will start from these still exact but less general re-
system considered. Other generic systems may also be cosults, future applicationgl7] to systems outside that generic

sidered(for example, a spherical tracer diffusing in a suspen-case will force us to go back to the most general formulation
sion of nonspherical particlgsThe one described here, how- of the theory. This justifies having developed a formal but
ever, will be used immediately as a simple prototype thageneral framework, from which a number of possible appli-
will allow us to explain the protocol to be followed in apply- cations will branch. Paper Il contains the first and most in-

ing our theory to concrete systems and conditions. mediate of such branches. As a final remark, let us mention
that the GLE approach presented here leads to results for the
IX. CONCLUSIONS tracer-diffusion properties, which turn out to be equivalent to

o results derived starting from the Fokker-Planck or the
Here we have presented the formal derivation of the GLEsmo|uchowski equation. An example will be given in the
that describes the Brownian motion of a nonspherical tracefo|iowing paper, where we will show that Hess and Klein’s
particle that interacts with other diffusing particles in a sus-egylt for self-diffusion of spherical particléahose deriva-
pension, which are in general nonspherical, and of differenfion starts from the many-particle Fokker-Planck equation
species. This is Eq51) of Sec. V. A relevant aspect of this fo|lows as a particular result of the GLE theory. This should
result is the flucftuatlon-dls&pathn relation in E§4). How- ot e surprising, since at least in the absence of hydrody-
ever, the most important result is the exact and general €Xamic interactions, the statistical information contained in
pression derived for the time-dependent friction tensoipe many-particle Fokker-Planck equation is the same as that

A £ (t) in Eq.(52), or its alternative expressions in E4S5) contained in the many-particle Langevin equation. Thus, Eq.

and (56) (the “concentration” and the “force” equations  (2) [or its extended version in Eq15)] is just one of the

These are expressions in terms of equilibrium static propeN+1) coupled Langevin equations, except that it is written

ties [n2{r,Q) and o ,4(r,Q,1',Q')] and of the collective the precise form needed to proceed with our method.

diﬁusign ropagatoy., 5(r or' (T't) [or through Eq(49) Spelling out the equivalences and differences with other ap-

of the tin?e ollaep?endpe(zcrlﬁ dif‘fu'sic,)n I;ernlala (r ﬁgr’ K_;l"t)]’ proaches is indeed an interesting topic, which falls, however,
- 5,1, Q750

he | is sill 1o be d ned | . outside the scope and length of the present paper. In this
The latter is still to be determined in an approximate mannefeqard, we refer the reader to a recent pafi28), where

and in the context of a concrete application. For the timesome of these topics are discussed in more detail.
being, we also included in this paper results referring to the

long-time and to the short-time regiméSecs. VI and VI). ACKNOWLEDGMENTS
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