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A general theoretical framework is developed to describe the tracer-diffusion properties of nonspherical
Brownian tracer particles that interact with the other particles in a multicomponent colloidal suspension of
generally nonspherical particles, in the absence of hydrodynamic interactions. Here we present the derivation
of the generalized Langevin equation~GLE! for the linear and angular velocity describing the Brownian
motion of the tracer particle. In addition to the dissipative plus the random force and torque exerted by the
solvent, this GLE contains the dissipative plus random force and torque due to the direct interactions with the
other particles. An exact and general expression is derived for the time-dependent friction tensor that embodies
the effects of the latter. Using a generalized Wertheim-Lovett’s relation, this expression is cast in two alter-
native but equivalent forms. The long-time and short-time limits~in reference to the structural relaxation time
t I) are also discussed.@S1063-651X~96!06012-6#

PACS number~s!: 82.70.Dd

I. INTRODUCTION

Tracer-diffusion experiments in colloidal suspensions
record the averaged properties of the Brownian motion of
individual labeled particles that do not interact among them-
selves, but do interact with the many other unlabeled par-
ticles of the host suspension@1#. One of the main goals of the
theory of colloid dynamics is to explain the observed tracer-
diffusion properties in terms of the effective interactions be-
tween colloidal particles and/or in terms of the equilibrium
static structural properties of the suspension@2#. Among the
various theoretical approaches@1–5# proposed to achieve
this goal, the generalized Langevin equation~GLE! approach
@5# has proved to be one of the most successful in terms of its
applications to systems that depart from the particular case
corresponding toself-diffusion inmonodispersesuspensions
of sphericalcolloidal particleswithout hydrodynamic inter-
actions. Thus, this theory has been applied to rather diverse
phenomena and systems such as electrolyte friction effects
on charged colloidal particles@6–9#, tracer diffusion in dilute
but highly interacting colloidal mixtures@10,11#, in hydrody-
namically concentrated hard-sphere suspensions@12#, in two-
dimensional@13# and quasi-two-dimensional@14# suspen-
sions, and even in model porous media@15,16#. All of these
applications, however, are restricted to thetranslational
Brownian motion ofsphericaltracer particles, which interact
with other particles that are also assumed spherical. The only
extension away from this restriction refers to the description
of electrolyte friction effects on thetranslationaldiffusion of
a nonspherical polyion@9# whose rotation, however, was ig-
nored. Since the technical capabilities exist to observe in
experimental or computer simulated systems therotational
dynamics of interacting nonspherical tracer particles, there is
an obvious need to extend the theory of colloid dynamics in

this direction. Thus, we have carried out a program@17–20#
aimed at extending the GLE approach to describe the effects
of the interactions of nonspherical tracer particles with the
other particles of the host suspension, on thetranslational
and rotational Brownian motion of the former, and in this
paper we start the systematic presentation of our results.

In this paper we present the most general results of our
work in the direction just described. Here we shall have in
mind the general situation involving a non-spherical Brown-
ian tracer particle thattranslatesand rotateswhile interact-
ing with other diffusing particles that may also be nonspheri-
cal, and may belong to more than one species. For the time
being, however, we shall not consider hydrodynamic inter-
actions. The main contribution of the present paper is the
derivation of a generalized Langevin equation for the linear
and angular velocity of the tracer particle. The effects of the
interactions with the surrounding particles is embodied in a
time-dependent friction tensor, for which an exact expression
is derived in terms of the static properties and of the time-
dependent correlation function of the local concentration of
such particles. Without yet introducing approximations or
restriction to particular cases, here we discuss and collect a
number of results of a general nature, and analyze some per-
tinent asymptotic~short- and long-time! limits. Although this
will prevent us here from presenting the results of concrete
applications, the idea is to separate what is completely gen-
eral and exact~although at the same time completely formal!
from what is the result of approximations and restrictions to
particular or generic cases or conditions. In the accompany-
ing paper~@20#, hereafter referred to as paper II!, however,
we illustrate how these general results can be converted into
an approximate but still general theory in the context of a
more restricted~although still quite relevant! generic case,
namely, that in which only the tracer particle remains non-
spherical, but all the other particles are assumed spherical.
For this generic case concrete applications will become pos-
sible and practicable, as paper II will illustrate.

In order to explain the general program of the present
extension to suspension of nonspherical Brownian particles,
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in the following section we provide a brief review of the
structure of the GLE theory of tracer-diffusion phenomena as
it was developed in the context of suspensions of spherical
particles. We then write~Secs. III and IV! the basic equa-
tions on which we build our extension. The main results of
this paper are derived and discussed in Sec. V. General re-
sults relevant to the long- and short-time regimes are dis-
cussed in Secs. VI and VII. In preparation for paper II, in
Sec. VIII we summarize the main results of this paper as they
apply to the generic system referred to above. Section IX
summarizes our conclusions.

II. THE GLE THEORY FOR TRACER DIFFUSION
OF SPHERICAL PARTICLES

In this section we review the most salient concepts and
results of the generalized Langevin equation description of
the effects of the direct interactions between aspherical
tracer Brownian particle~sometimes referred to simply as
‘‘the tracer’’! with other interacting Brownian particles~also
assumed spherical! diffusing around it. The GLE theory@5#
that we review here, and that we extend in this paper, only
refers to the effects of these direct interactions on the trans-
lational Brownian motion of the tracer particle, which may
be identical ~‘‘self-diffusion’’ ! or different ~‘‘tracer-
diffusion’’ ! from the surrounding particles. The Brownian
motion of an isolated tracer particle of massM is described
by the ordinary Langevin equation,

M
dV~ t !

dt
52z0V~ t !1f 0~ t !, ~1!

for its velocity V(t). Here z 0 is the hydrodynamic friction
coefficient, andf 0(t) is a random force, modeled as a Gauss-
ian d-correlated~white! noise, with zero mean and time-
dependent correlation function given by the fluctuation-
dissipation relation̂ f 0(t)f 0†(0)&5kBTz02d(t)1, where1 is
the 333 identity diad andkB , T, andd(t) are Boltzmann’s
constant, the temperature, and Dirac’sd function. From
these assumptions, all the statistical properties of the velocity
V(t) and the displacementDR(t)5*0

t V(t8)dt8 of the par-
ticle can be determined@21#. Furthermore, the equivalence
between the description of these statistical properties on the
basis of Eq.~1! and that provided by the corresponding
Fokker-Planck equation is also well established. Let us men-
tion, however, that Eq.~1! assumes that the solvent reacts
instantaneously, so that the hydrodynamic friction is instan-
taneously proprotional toV(t). In reality, the finite-time re-
sponse of the solvent leads to memory effects, whose de-
scription requires the replacement of the term2z0V(t) in
Eq. ~1! by 2*0

t z0(t2t8)V(t8)dt8. In this case, it is not pos-
sible to write a corresponding Fokker-Planck equation, since
the stochastic processV(t) is no longer Markovian. Never-
theless, the generalized Langevin equation that results from
this replacement still allows us to write a fluctuation-
dissipation relation @now reading ^f 0(t)f 0†(0)&
5kBTz0(t)1], and to express the velocity autocorrelation
function in terms of the time-dependent friction function
z0(t). In this work, however, we shall not be interested in
this relaxation process, so we assume thatz0(t) can be ap-
proximated, as required in Eq.~1!, by z0(t)5z02d(t), with

z0 being the stationary hydrodynamic friction coefficient.
From Eq. ~1! we have that ^V(t)•V†(0)&
5(3kBT/M )exp(2t/tB), with tB5M /z0. This defines the
‘‘Brownian’’ relaxation timetB . Eq. ~1! describes the relax-
ation of both the velocity and the displacement of the particle
@29#. In this paper we shall only be concerned with the so-
called diffusive regime,t@tB , i.e., that in which the veloc-
ity has relaxed by hydrodynamic friction, so that we can
write ^V(t)•V†(0)&5(kBT/M )z02d(t). In this regime, the
mean-squared displacement, for example, is given by
^@DR(t)#2&56D0t, with D05kBT/z

0.
In the presence of direct interactions between the tracer

particle and the other colloidal particles in the suspension
~but ignoring hydrodynamic interactions!, Eq.~1! is modified
by the addition of the total direct forceFtot(t) that the other
particles exert on the tracer. The GLE theory starts by notic-
ing thatFtot(t) can be written exactly as a linear function of
the departuredn(r ,t) of the instantaneous local concentra-
tion profile n(r ,t) of the other particles around the tracer,
from its radial equilibrium averageneq(r ), so that Eq.~1!
now reads

M
dV~ t !

dt
52z0V~ t !1f 0~ t !1E d3r @¹c~r !#dn~r ,t !,

~2!

with c(r ) being the pair potential between one of the sur-
rounding particles located at positionr and the tracer particle
located at the origin, and where

dn~r ,t ![n~r ,t !2neq~r !. ~3!

Thus, V(t) couples dynamically only with the collective
variabledn(r ,t), for which a time-evolution equation must
then be written. Such an equation, together with Eq.~2!,
constitutes a pair of coupled stochastic equations forV(t)
and dn(r ,t), whose contraction@i.e., the elimination of
dn(r ,t)] leads to the main result of GLE theory, namely, the
generalized Langevin equation for the tracer particle, which
reads

M
dV~ t !

dt
52z0V~ t !1f 0~ t !

1E
0

t

dt8Dz~ t2t8!V~ t8!1F~ t !. ~4!

In this equation,F(t) is a fluctuating force deriving from the
spontaneous departures from zero of the net direct force ex-
erted by the other particles on the tracer. It has zero mean,
but it is non-Markovian, and satisfies the fluctuation-
dissipation relation̂F(t)F†(0)&5kBTDz(t)1. The memory
function Dz(t) contains the dissipative friction effects de-
rived from the direct interactions of the tracer with the par-
ticles around it. Its relaxation time is determined by the
structural relaxation of the cage formed by the surrounding
particles, and is characterized by the timet I within which
the particles diffuse a mean distance between them. In
general,t I@tB . Thus, in the diffusive regime (t@tB) there
is a time-scale separation in reference tot I . ‘‘Long times’’
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meanst@t I , while ‘‘short times’’ meanst!t I ~but still in
the diffusive regime, i.e., such thatt@tB). At short times,
the effects of the interactions involved inDz(t) are still not
perceptible, and the movement of the tracer is essentially free
diffusion. On the other hand, at asymptotically long times,
the functionDz(t) can be approximated by a Diracd func-
tion ~Markovian limit! times the time integral of 2Dz(t),
that is, Eq.~4! can be rewritten just as Eq.~1!, but with z0

replaced by the total friction coefficientz given by
z5z01Dz, with Dz given by Dz[*0

`Dz(t)dt. Thus, the
long-time diffusion coefficientDL is given by the Einstein
relationDL5kBT/(z

01Dz). The determination ofDz, or its
dynamical extensionDz(t), is precisely one of the main pur-
poses of the theories of Brownian motion of interacting col-
loidal particles.

This being a typical many-body problem, such theories
cannot be but approximate. First, however, the GLE theory
@5# leads to the following exact and general expression for
Dz(t):

Dz~ t !5
b

3
TrF E d3r E d3r 8@“c~r !#

3^dn~r ,t !dn~r 8,0!&@“8c~r 8!#G . ~5!

The van Hove function,̂ dn(r ,t)dn(r 8,0)&, is the time-
dependent correlation function of the fluctuations of the local
concentration of the surrounding particles. In this function all
the information about the relaxation by diffusive processes
of the cloud of particles around the tracer resides, and it is
here where important approximations must be made, before
the exact and general result of Eq.~5! may be useful in
practice. There exists a variety of approximations that lead to
a diversity of approximate expressions forDz(t). For the
purpose of illustration, we quote here one of the simplest
approximate expressions@12# derived in this way for self-
diffusion, namely,

Dz~ t !5
kBTn

8p3 E d3k
@kzh~k!#2

11nh~k!
expF22k2D0t

11nh~k!G , ~6!

whereh(k) is the Fourier transform~FT! of the total corre-
lation function @22# h(r )5g(r )21 with g(r )5neq(r )/n, n
being the bulk concentration of the suspension. Approximate
expressions such as this are general, in the sense that we
have not yet specified the pair interaction potentialu(r ). Its
application to specific systems may involve, however, addi-
tional approximations, which are not of a dynamic nature,
but which refer to the precise calculation ofh(r ), given
c(r ). References@5#–@16# illustrate the application of these
general results to a variety of specific systems and condi-
tions.

III. LANGEVIN EQUATION FOR AN INTERACTING
NONSPHERICAL TRACER

The general system we have in mind consists of a volume
V, containing the solvent in which a labeled tracer particle,
plus N other colloidal particles of the same species~all of
them in general nonspherical! are suspended. The case of

several species will be considered at the end of Sec. V, since
it is only a matter of careful and adequate notation.

Let V(t) andv(t) be the linear and angular velocity of
the tracer particle defined with respect to the laboratory. The
vectorsV(t) andv(t) can be written in terms of their com-
ponents~projections! along the axis of a given reference sys-
tem whose origin and orientation are fixed with respect to the
laboratory. Such a description ofV(t) andv(t) is, however,
not the most convenient for our purposes. Let us consider
instead the projections ofV(t) andv(t) along a coordinate
system whose origin is certainly fixed to the laboratory, but
whose orientation changes with time, and in fact, follows
instantaneously the orientation of the main symmetry axis of
the tracer particle. Within this description, the extension of
Eq. ~1! above to an isolated nonspherical Brownian particle
reads@23#

M
dV~ t !
dt 1v~ t !3MV~ t !52z0

↔
•V~ t !2zTR

0
↔
•v~ t !

1f 0~ t !, ~7!

I•
dv~ t !

dt
1v~ t !3@ I•v~ t !#52zRT

0
↔

•V~ t !2zR
0
↔
•v~ t !

1t0~ t !. ~8!

These are just the equations of motion of a rigid body in the
reference system just decribed, in which the tensor of inertia
I is diagonal@24#. Thus, Eq.~8! is the well-known Euler-
Langevin equation for a rigid body. The kinematic terms on
the left-hand side also derive from the particular choice of
this reference system. However, they are quadratic inV(t)
and v(t), and, hence, must be neglected in building up a
linear theory@25,26# for the fluctuations of these quantities
around their vanishing equilibrium value. The right-hand
side of these equations thus expresses the total force and total
torque on the tracer particle. In the linear regime the friction
force and torque must in general be linear in all the compo-
nents ofV(t) and v(t). The proportionality constants are
grouped in the translational-translational~TT!, translational-
rotational (TR), RT, and RR 333 friction tensors

zTT
0
↔
([z0

↔
), zTR

0
↔

, zRT
0
↔

, zRR
0
↔
([zR

0
↔
), respectively. Finally,

f 0(t) and t0(t) are the corresponding random force and
torque, respectively, assumed Gaussian, andd correlated,
with zero mean, and time-correlation function given by the
following fluctuation-dissipation relation:

S ^f 0~ t !f 0†~0!& ^f 0~ t !t0†~0!&

^t0~ t !f 0†~0!& ^t0~ t !t0†~0!& D
5kBTS z 0

↔
zTR
0
↔

zRT
0
↔

zR
0
↔ D 2d~ t !. ~9!

Strictly speaking, these relations cannot be satisfied by Eqs.
~7! and~8!. This is so because these are nonlinear equations,
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due to the termsv(t)3V(t) andv(t)3@ I•v(t)#. However,
as indicated before, the linearization of the transport equa-
tions describing spontaneous fluctuations of the dynamic
variables around their equilibrium values is a key aspect in
the general theory of equilibrium time-dependent fluctua-
tions @25,26#. The assumptions above concerningf 0(t) and
t0(t) are enough to characterize completely the stochastic
process@V(t),v(t)#, which then turns out to be stationary,
Gaussian, Markovian, of zero mean and time-dependent cor-
relation function given by

^V
⇒

~ t !V†
⇒

~0!&5@exp~2M21
⇔

•z0
⇔
t !#•M21

⇔
kBT, ~10!

where we have introduced a compact notation in terms of the
six-component vectors

V
⇒

~ t !5S V~ t !

v~ t !D , f 0
⇒

~ t !5S f 0~ t !t0~ t ! D , ~11!

and of the 636 matrices

M
⇔

5S M1 0

0† I D , z0
⇔

5S z0
↔

zTR
0
↔

zRT
0
↔

zR
0
↔ D ~12!

~i.e.,M
⇔

i j5Mid i j , with Mi5M for i51,2,3, andMi5I i for
i54,5,6, with I 1 , I 2 , I 3 being the principal moments of
inertia! and

^V
⇒

~ t !V
⇒
†~0!&5S ^V~ t !V†~0!& ^V~ t !v†~0!&

^v~ t !V†~0!& ^v~ t !v†~0!&D . ~13!

We now may use this compact notation to rewrite Eqs.
~7!–~9! ~which describe the Brownian motion of a freely
diffusing nonspherical tracer particle! but now including the
direct interactions of this tracer particle with other Brownian
particles diffusing around it. In the absence of hydrodynamic
interactions, the Brownian motion of the tracer particle is
still described by Eqs.~7! and ~8! to which we add, respec-
tively, the instantaneous total direct forceFtot(t) and total
direct torqueTtot(t) that those other particles exert on the
tracer. Grouping togetherFtot(t) and Ttot(t) in the six-
component vector

F
⇒
tot~ t !5S Ftot~ t !Ttot~ t !D , ~14!

Eqs.~7!–~9! will now read, in our compact notation, as

M
⇔
•

dV
⇒

~ t !

dt
52z0

⇔
•V

⇒
~ t !1f 0

⇒
~ t !1F

⇒
tot~ t ! ~15!

and

^f 0
⇒

~ t !f 0
⇒
†~0!&5kBTz0

⇔
2d~ t !. ~16!

It is worth emphasizing that, within the condition of the ab-
sence of hydrodynamic interactions, there exists no addi-
tional approximation in writing Eqs.~15! and ~16! for an
interacting tracer. Let us also mention that, within the con-
text of the theory developed here, the hydrodynamic friction

coefficientsz0
⇔
are considered phenomenological coefficients,

assumed to be given, and in terms of which, among other
things, we will have to express the final effects of the direct

interactions represented in Eq.~15! by the ‘‘force’’ F
⇒
tot(t)

that the other particles exert on the tracer.

Let us now writeF
⇒
tot(t) in terms of the collective dy-

namical variable that represents the local concentration of
particles. We assume that the total energyU of the direct
interaction between theN11 particles of the system is pair-
wise additive. Therefore, the forces and torques are also pair-
wise additive. Thus,

Ftot~ t !5(
i51

N

Fi
~T! , ~17!

that is, the total force on the tracer is the sum of the forces
Fi
(T) that the i th particle (i51, . . . ,N) exert on the tracer

~denoted by the index ‘‘T’’ !. It can be shown~third law of
Newton! thatFi

(T)52FT
( i ) whereFT

( i ) is the total force on the
i th particle due to its interaction with the tracer particle.
Thus, the total direct force on the tracer particle can be writ-
ten as

Ftot~ t !52(
i51

N

FT
~ i ! . ~18!

In the same way, it can be shown that the total torque on the
tracer due to its direct interactions with theN particles, can
be written as

Ttot~ t !52(
i51

N

TT
~ i ! , ~19!

whereTT
( i ) is the total~orbital plus intrinsic! torque on par-

ticle i due to its direct interaction with the tracer particle.
Let us now expressFT

( i ) and TT
( i ) in terms of the pair

interaction energy between the tracer particle and thei th
particle. For this purpose, we express this pair interaction in
terms of positions and orientations of all the particles re-
ferred to a reference system fixed to the tracer particle. Thus,
the location of particlei will be denoted by the position
vector r ( i ), whose origin is fixed at the tracer’s center of
mass~c.m.!, and the orientation of the same particle will be
determined by a set of three angular variables
(V1

( i ) ,V2
( i ) ,V3

( i ))[V̄( i ) describing the orientation of the prin-
cipal axis of that particle relative to the principal axis of the
tracer particle. The variablesV1 , V2 , andV3 may be the
Euler angles of the corresponding rotation, or any other
equivalent description. Obviously, the tracer’s position and
orientation in this coordinate system remain constant@we
assume, in fact,r (T)50, and V̄(T)5(0,0,0)]. Thus, the pair
interaction energy of the tracer particle with another particle
located atr , and with orientationV̄, will only depend onr
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andV̄, and will be denoted bycT(r ,V̄). Thus, we now can
expressFT

( i ) andTT
( i ) in terms of the linear and angular gra-

dients ofcT(r
( i ),V̄( i )) in the following manner:

FT
~ i !52S ]cT~r

~ i !,V̄~ i !!

]r ~ i ! D
[2“

~ i !cT~r
~ i !,V̄~ i !! ~20!

and

TT
~ i !5r ~ i !3FT

~ i !1T~ i !, ~21!

wherer ( i )3FT
( i ) is the orbital torque on particlei due to the

forceFT
( i ) on its center of mass, capable of producing a trans-

lation around the tracer’s CM. The intrinsic torqueT( i ) can
be denoted as

T~ i !52S ]cT~r
~ i !,V̄~ i !!

]fW
D , ~22!

which means that if particlei rotates with an infinitesimal
angular displacementdfW of magnitudedf in the direction
n̂, then, the change in the energy of its interaction with the
tracer is

dcT52S ]cT

]fW
D •dfW , ~23!

where (]cT /]fW ) is merely a symbol@24#. Here we only
quote, for example, that for axially symmetric particles,
whose orientation can be defined by the components
V i5ui ( i51,2,3) of the unitary vector along its axis, the
angular gradient@]cT(r ,V̄)/]fW # now reads @]cT(r ,û)/
]fW ]5û3]cT(r ,û)/]û. Going back to Eq.~18!, and using
Eq. ~20!, the total direct force on the tracer can be rewritten
as

Ftot5(
i51

N S ]cT~r
~ i !,V̄~ i !!

]r ~ i ! D
5E d3r E dV̄@“cT~r ,V̄!#n~r ,V̄;t !, ~24!

with

n~r ,V̄;t ![(
i51

N

d„r2r ~ i !~ t !…d„V̄2V̄~ i !~ t !…, ~25!

being the instantaneous local concentration of particles at
position r and orientationV̄, respectively referred to the
c.m., and to the orientation of the principal axis, of the tracer.
In a similar fashion, we can rewrite the total torqueTtot(t) in
Eq. ~19!, using Eqs.~21!, ~22!, and~25!, as

Ttot~ t !5E d3r E dV̄F r3“cT~r ,V̄!

1
]cT~r ,V̄!

]fW
G•n~r ,V̄;t !. ~26!

We now come back to Eq.~15!, and write it, in the compact
notation introduced before, as

M
⇔
•

dV
⇒

~ t !

dt
52z0

⇔
•V

⇒
~ t !1f 0

⇒
~ t !

1E d3r E dV̄@“
⇒

cT~r ,V̄!#n~r ,V̄;t !,

~27!

with

“

⇒
5S “

“ rot
D ~28!

and

“ rot[r3“1
]

]fW
. ~29!

Equation ~27! tells us that the equation of motion of the
tracer couples, in fact, with the positions and orientations of
the other particles surrounding it, but solely through the col-
lective variablen(r ,V̄;t) defined in Eq.~25!. This is an enor-
mous simplification in our further development since we do
not need to be concerned about the details of the position and
motion of each and all individual particles. Instead, we will
find that only the essential features of the time-evolution
equation forn(r ,V̄;t) turn out to be important in determin-
ing the most relevant features of the effective equation of
motion of the tracer particle,@i.e., the generalized Langevin

equation forV
⇒
(t), that we are aimed at deriving#.

The dynamical variablen(r ,V̄;t) depends on the instan-
taneous configurationr ( i )(t), V̄( i )(t) ( i51,2, . . . ,N) of the
N particles around the tracer. Its equilibrium ensemble aver-
age, denoted asneq(r ,V̄)[^n(r ,V̄;t)&, is, however, indepen-
dent of time, and has the following important property. Tak-
ing an ensemble average of Eq.~27!, we conclude that

E d3r E dV̄@“
⇒

cT~r ,V̄!#neq~r ,V̄!50, ~30!

where use has been made of the fact^V
⇒
(t)&5^f 0

⇒
(t)&50.

Therefore, Eq.~27! can be rewritten as
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M
⇔
•

dV
⇒

~ t !

dt
52z0

⇔
•V

⇒
~ t !1f 0

⇒
~ t !

1E d3r E dV̄@“
⇒

cT~r ,V̄!#dn~r ,V̄;t !,

~31!

that is, in terms of the fluctuationsdn(r ,V̄;t) of the local
concentration around its equilibrium value,

dn~r ,V̄;t ![n~r ,V̄;t !2neq~r ,V̄!. ~32!

The next step is to write up the time-evolution equation for
this collective variable.

IV. TIME EVOLUTION EQUATION
FOR THE LOCAL CONCENTRATION

The time rate of change ofn(r ,V̄;t) is due to two funda-
mentally different mechanisms. The first is purely kinematic,
and is due to the fact that the positionr and orientationV̄ in
n(r ,V̄;t) are referred to the reference system attached to the
tracer particle. The tracer moves instantaneously with linear
velocity V(t), and rotates with angular velocityv(t). Thus,
even if the other particles are kept fixed~with respect to the
laboratory!, n(r ,V̄;t) will change, due to the movement of
the tracer. To quantify this effect, imagine a displacement
DR of the tracer’s c.m., taking place without changing ori-
entation in a timeDt, such thatDR5V(t)Dt. If the concen-
tration profile at timet is n(r ,V̄;t) at time t1Dt the profile
should be the same as at timet, but with r displaced by
DR, that is

n~r ,V̄;t1Dt !5n~r1DR,V̄;t !. ~33!

Hence, we can calculate the change ofDn(r ,V̄;t) originated
by the displacementDR, as

Dn~r ,V̄;t ![n~r ,V̄;t1Dt !2n~r ,V̄;t !

5n~r1DR,V̄;t !2n~r ,V̄;t !

5@n~r ,V̄;t !#•DR1O~DR!2

5@“n~r ,V̄;t !#•V~ t !Dt1O~Dt !2. ~34!

Therefore, the rate of change ofn(r ,V̄,t) due to this infini-
tesimal displacement, is given by

]n~r ,V̄;t !

]t
5@“n~r ,V̄;t !#•V~ t !. ~35!

Similarly, if the tracer rotates by an angular displacement
DfW 5v(t)Dt ~without a displacement of its c.m.!, we find
that the concentration profile at timet1Dt is the same as at
time t, but with r displaced byDr52r3DfW and V̄ dis-
placed byDV̄5(]V̄/]fW )•DfW . Thus,

n~r ,V̄;t1Dt !5n~r1Dr ,V̄1DV̄;t !. ~36!

Hence,

Dn~r ,V;t ![n~r ,V̄;t1Dt !2n~r ,V̄;t !

5n~r1Dr ,V̄1DV̄;t !2n~r ,V̄;t !

5@“n~r ,V̄;t !#•Dr1S ]n

]V̄
D •DV̄1O~Dt !2

52@“n~r ,V̄;t !#•~r3DfW !

1S ]n

]V̄
D •S ]V̄

]fW
D •DfW 1O~Dt !2

5@r3“n~r ,V̄;t !#•DfW

1S ]n~r ,V̄;t !

]fW
D •DfW 1O~Dt !2. ~37!

Thus, we can write the rate of change ofn(r ,V̄;t), due to
this infinitesimal angular displacement, as

]n~r ,V̄;t !

]t
5F S r3“1

]

]fW
D n~r ,V̄;t !G•v~ t !. ~38!

Collecting the contributions in Eqs.~35! and~38!, we finally
arrive at

]n~r ,V̄;t !

]t
5@“

⇒
n~r ,V̄;t !#•V

⇒
~ t !1S ]n

]t D
diff

, ~39!

where the term (]n/]t)diff represents the rate of change of
n(r ,V̄;t) due to the second fundamental mechanism for the
change inn(r ,V̄;t), namely, the diffusive processes that
change the local concentration according to a relaxation law
that we now discuss.

The term (]n/]t)diff in Eq. ~39! refers to the change in
n(r ,V̄;t) due to the~translational and rotational! diffusion of
the particles around the tracer. Clearly, if the tracer itself

were not moving@i.e., if V
⇒
(t)50], this would be the only

mechanism forn(r ,V̄;t) to change with time. In such a case,
Eq. ~39! would be just the diffusion equation describing the
change inn(r ,V̄;t) due to the translational and rotational
diffusion of the surrounding particles in the presence of the
static fieldcT(r ,V̄) produced by the immobile tracer par-
ticle. If, in addition, we were to neglect the effect of this field
of force, we would still need the most general diffusion
equation forn(r ,V̄;t). This, however, is in itself one of the
most basic problems that the theory of colloid dynamics
faces~which involves, in fact, our tracer-diffusion phenom-
enon as a particular problem!. Such a problem is not yet
completely solved, even in the more specific case of spheri-
cal particles~no rotational diffusion!. Thus, if we do not
want to commit to approximations or particular cases, we
have to write up the most general form of the diffusion equa-
tion for n(r ,V̄;t), or, better, for the fluctuations
dn(r ,V̄;t), which is what we need in Eq.~31!. In this regard,
the general principles of the linear irreversible thermody-
namic ~LIT ! theory of dynamic fluctuations@25,26# dictates
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the most general structure of the linearized version of Eq.
~39! for dn(r ,V̄;t). According to these principles, if the vari-

ablesV
⇒
(t) and dn(r ,V̄;t) constitute the components of a

multivariate stochastic process describing spontaneous fluc-
tuations around the thermodynamic equilibrium state, then
such a stochastic process must satisfy a generalized Langevin
equation with a very rigid structure@27#. Equation~31!, to-
gether with the linearized version of Eq.~39!, constitutes

such a generalized Langevin equation, expressingdV
⇒
(t)/dt

and]dn(r ,V̄;t)/]t as linear combinations of both variables

V
⇒
(t) anddn(r ,V̄;t). Due to time-reversal symmetry consid-

erations, many of those linear couplings are absent@5#. In

fact, the nonvanishing terms in the equation fordV
⇒
(t)/dt are

already exhibited by Eq.~31!, and similar symmetry consid-
erations determine the absence or presence of the various
possible terms coupling]dn(r ,V̄;t)/]t to the components of

V
⇒
(t) anddn(r ,V̄;t). The result of this analysis finally leads

us to the conclusion that the most general time-evolution
equation fordn(r ,V̄;t) can be written as

]dn~r ,V̄;t !

]t
5@“

⇒
neq~r ,V̄!#•V

⇒
~ t !

2E
0

t

dt8E d3r 8E dV̄8E d3r 9E dV̄9L

3~r ,V̄;r 8,V̄8;t2t8!s21~r 8,V̄8;r 9,V̄9!

3dn~r 9,V̄9;t8!1h~r ,V̄;t !, ~40!

with s21(r ,V̄;r 8,V̄8) being the inverse function of the static
correlation function

s~r ,V̄,r 8,V̄8![^dn~r ,V̄;0!dn~r 8,V̄8;0!&, ~41!

in the sense that

E d3r 8E dV̄8s~r ,V̄;r 8,V̄8!s21~r 8,V̄8;r 9,V̄9!

5d~r2r 9!,

d~V̄2V̄9!, ~42!

whereasL(r ,V̄,r 8,V̄8;t) is a generalized temporally, spa-
tially, and orientationally nonlocal diffusion kernel~a gener-
alized ‘‘matrix’’ of Onsager coefficients!. h(r ,V̄;t) is a sta-
tionary random term, originating from the random diffusion
fluxes. It has zero mean, and a time-dependent correlation
function given by the Onsager ‘‘matrix’’L(r ,V̄,r 8,V̄8;t),
according to the following fluctuation-dissipation relation:

^h~r ,V̄;t !h~r 8,V̄8;t8!&5L~r ,V̄;r 8,V̄8;t2t8!. ~43!

To simplify the notation, let us indicate the convolutions in
the equations above as inner products between the ‘‘vectors’’
and/or ‘‘matrices’’ dn(t), neq, h(t), L

'
(t), s

'
, etc., whose

components are dn(r ,V̄;t), neq(r ,V̄), h(r ,V̄;t),

L(r ,V̄;r 8,V̄8;t), s(r ,V̄;r 8,V̄8), etc., in such a way that, for
example, Eqs.~40! and~43! above can be rewritten still more
economically as

]dn~ t !
]t

5@“
⇒
neq#•V

⇒
~ t !2E

0

t

dtL
'

~ t2t8!ss
'

21sdn~ t8!

1h~ t !, ~44!

and

^h~ t !h†~0!&5L
'

~ t !. ~45!

Thus, the inner product in these equations, indicated by
‘‘ s, ’’ implies integration over the common position and ori-
entation indices (r ,V̄) of the corresponding vectors and/or
matrices, i.e., ‘‘s ’’↔ ‘‘ *d3r*dV̄.’’

Unfortunately, no more can be extracted further from the
principles of the LIT theory concerning the detailed structure
of the generalized diffusion kernelL

'
(t). Thus, it will be on

this object where the most important approximations and
simplifications will eventually have to be introduced. On the
other hand,neq(r ,V̄) and s(r ,V̄;r 8,V̄8) are well defined
equilibrium static structural properties, amenable in principle
to statistical thermodynamic determination, starting from the
pair potentialcT(r ,V̄) between the tracer and one of the
surrounding particles, and the pair potentialu(r ,V̄;r 8,V̄8)
between two of those particles. Here, too, one may have to
resort to approximations or simplifications, but for reasons
that are not as fundamental, as in the case ofL

'
~t!. As it

happens,neq(r ,V̄) ands(r ,V̄;r 8,V̄8) are in reality two- and
three-particle distribution functions, respectively~one of
them being the tracer particle!, and their exact statistical ther-
modynamic determination may prove impossible in practice,
even with the assistance of computer simulations. Neverthe-
less, we shall continue our discussion without regard to these
eventual practical concerns, so as to keep our present discus-
sion at a formally exact level.

In this respect, an interesting observation can be made,
and it refers to a beautiful side product of the reasoning that
led us to Eq.~44! above. Clearly, the first term on the right-
hand side of that equation is just the linearization of the
streaming term in Eq.~39!, whose meaning and origin were
discussed at the beginning of this section. Thus, this term in
Eq. ~44! can be written exactly, attending to purely kinematic
considerations. However, in considering Eqs.~44! and ~31!
as a closed system of linear stochastic equations for the vari-

able V
⇒
(t) and dn(r ,V̄;t), we find that this nondissipative

term of Eq.~44! is not independent of the other nondissipa-
tive coupling term appearing in this system of equations,

namely, the force term in Eq.~31! „reading@“
⇒

cT#•dn(t) in
our notation…. These two terms are related to each other by a
very stringent symmetry condition@5#. One can check that
such a symmetry condition is satisfied if and only if the

following relationship between@“
⇒

cT# and @“
⇒
neq# holds:

@“
⇒

cT#52kBTs
'

21s@“
⇒
neq#. ~46!
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This, however, is nothing else but the generalization of an
exact relationship betweenneq ands', well established in
the statistical thermodynamic theory of inhomogeneous flu-
ids. The restricted version of this equation, referring to fluids
of spherical particles, is known as the Wertheim-Lovett re-
lation @28#. Notice that Eq.~46! can also be written, using
Eq. ~42!, as

@“
⇒
neq#52bs

'
s@“

⇒
cT#, ~47!

with b51/kBT. These two exact relations will prove useful
later on.

V. CONTRACTION OF THE DESCRIPTION

The main results of Secs. III and IV are the time-

evolution equations for the stochastic variablesV
⇒
(t) and

dn(t), namely, Eqs.~31! and~44!. Together, these equations
constitute a stationary process, and therefore, the stationarity
condition requires that the fluctuation-dissipation relations in
Eqs. ~16! and ~43!, complemented with the condition of in-

dependence betweenF
⇒
tot(t) and h(t), i.e., ^F

⇒
tot(t)h

†(0)&
50, to be satisfied@27#. From these two time-evolution equa-
tions we must now eliminatedn(t), and this should lead us

to an effective equation involving only the variableV
⇒
(t),

which is the GLE we wish to derive. Such a procedure con-
stitutes what is referred to as the contraction of the descrip-
tion @5,27#. Formally, we solve Eq.~44! for dn(t), and sub-
stitute in Eq.~31!. The solution of Eq.~44! can be written as

dn~ t !5x
'

~ t !sdn~0!1E
0

t

dt8x
'

~ t2t8!s@“
⇒
neq#•V

⇒
~ t !

1E
0

t

dt8x
'

~ t2t8!sh~ t8!, ~48!

wherex
'
(t) is the solution of

]x
'

~ t !
]t 52E

0

t

dt8L
'

~ t2t8!ss
'

21sx
'

~ t8!, ~49!

with initial condition

x
'

~0!5U
'

~50!

@whereU(r ,V̄,r 8,V̄8)5d(r2r 8)d(V̄2V̄8)]. Hence,x
'
(t) is

the Green’s function of the generalized diffusion equation in
Eq. ~44!. Substituting Eq.~48! in Eq. ~31!, we obtain

M
⇔
•

dV
⇒

~ t !

dt
52z0

⇔
•V

⇒
~ t !1f 0

⇒
~ t !

2E
0

t

dt8D z
⇔

~ t2t8!•V
⇒

~ t8!1F
⇒

~ t !, ~51!

with

D z
⇔

~ t !52@“
⇒

cT#sx
'

~ t !s@“
⇒
neq# ~52!

and

F
⇒

~ t !5@“
⇒

cT#sx
'

~ t !sdn~0!1E
0

t

dt8x
'

~ t2t8!sh~ t8!.

~53!

F
⇒
(t) is a linear function of the stochastic variablesdn(t) and

h(t), and it is, therefore, a stochastic force, with zero mean,
and time correlation function given by the following
fluctuation-dissipation relation,

^F
⇒

~ t !F
⇒
†~0!&5kBTDz

⇔
~ t !. ~54!

This relation can be demonstrated by using a theorem@27#
that assures us that a contracted description of astationary
stochastic process is also stationary, provided that the static
cross correlations between the remaining and the eliminated
variables vanish. This is satisfied in our case, due to the

different time-reversal symmetry of the variablesV
⇒
(t) and

dn(t), which implies that̂ V
⇒
(0)dn†(0)&50. On the other

hand, another general theorem establishes@27# that the sta-
tionarity of a linear stochastic process is a necessary and
sufficient condition for the fluctuation-dissipation relation to
be satisfied. In our case, such a relation is precisely Eq.~54!.

Equations~51!, ~52!, and ~54! are the most fundamental
results of this paper. From Eq.~51!, the velocity autocorre-
lation functions, and other relevant time-dependent proper-
ties, could in principle be derived in terms of the components

of the solvent friction tensorz0
⇔

~which in our theory are
considered externally determined phenomenological param-

eters! and of the time-dependent friction tensorD z
⇔
(t). Thus,

Dz
⇔
(t), which describes the additional friction effects on the

tracer due to its direct interactions with the other particles,
now becomes the most important object, whose determina-
tion is the immediate goal in any concrete application of our
theory. For this reason, let us now focus our attention on Eq.

~52!, which expressesD z
⇔
(t) in terms of three objects: the

pair potentialcT(r ,V̄) ~assumed known!, the equilibrium
concentration profileneq(r ,V̄) ~assumed caculable by statis-
tical thermodynamic methods!, and the collective-diffusion
propagatorx

'
(t). The latter is defined as the solution of Eq.

~49! with initial condition given by Eq.~50!. Equation~49!,
in its turn, involves the static correlation matrixs

'
~assumed

calculable by statistical thermodynamic methods!, and the
collective-diffusion kernelL

'
(t). Thus, in order to be able to

use Eq.~52! eitherL
'
(t) or x

'
(t) must be provided. This will

only be possible in an approximate manner, and the follow-
ing paper deals with this aspect of our theory. For the time
being, however, it is convenient to use the exact~Wertheim-
Lovett’s! relation in Eqs.~46! and ~47! to derive two addi-

tional equivalent expressions forD z
⇔
(t), namely,

D z
⇔

~ t !5kBT@“
⇒
neq#ss

'
21sx

'
~ t !s@neq#†, ~55!

and
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D z
⇔

~ t !5b@“
⇒

cT#sx
'

~ t !ss
'

s@“
⇒

cT#†. ~56!

Although these two expressions forD z
⇔
(t) are formally

equivalent to the original result in Eq.~52!, either of them
may prove to be more convenient under particular condi-
tions. For example, if the static structural propertiesneq and
s
'
are more directly accessible~either theoretically or experi-

mentally! than the pair potentialcT , then Eq.~55! is a better

starting point for the determination ofD z
⇔
(t). On the other

hand, for softer and longer-ranged potentialscT , Eq. ~56!
may be more useful. Let us also notice that the equivalence
between Eqs.~55! and~56! is only guaranteed as long as no
approximation is involved that breaks the connection be-
tweencT , n

eq, ands
'
represented by Wertheim-Lovett’s re-

lation. In any other case, one should be prepared to find
inconsistencies between results calculated from Eq.~55!
~that we shall refer to as the ‘‘concentration equation’’! or
from Eq. ~56! ~referred to as the ‘‘force equation’’!. This
situation is similar to the inconsistencies found in the theory
of liquids @22#, when the same thermodynamic property is
calculated from the energy, virial, or compressibility equa-
tions, using as an input an approximate radial distribution
function. This will be illustrated in the following paper. In
reference to the brief review in Sec. II, let us notice that our
main results in this section@Eqs.~51! and~52!# correspond to
Eqs. ~4! and ~5! of Sec. II. More precisely, Eq.~5! is the
particular version for spherical particles of the ‘‘force’’ equa-
tion @Eq. ~56!#. To see this, notice that multiplying Eq.~44!
by dn†(0), and taking the ensemble average, we get the
time-evolution equation for the van Hove function

^dn(r ,V̄,t)dn(r 8,V̄8,0)&. This is just the time-evolution
equation thatx

'
(t) satisfies@since there are no correlations

betweenV
⇒
(t) or h(t) with dn(0)]. Thus, ^dn(t)dn†(0)&

differs from x
'
(t) only in the initial condition@x

'
(t50)5U

'
and ^dn(t50)dn†(0)&5s

'
], and hence, ^dn(t)dn†(0)&

5x
'
(t)ss

'
. Using this result in Eq.~56!, it should now be

easy to recognize Eq.~5! as a particular result of Eq.~56!.
To close this section on the most general results of our

theory, let us now go back to the begining of Sec. III, where
we indicated that the consideration of a single species of
particles interacting with the tracer was only a convenient
but nonessential simplification. At this point, however, it is
easy to indicate the way in which all our previous discussion
applies when we consider an arbitrary numbern of species
of particles around the tracer. This is possible due to our
compact notation, which allowed us to denote the functions
n(r ,V̄,t), cT(r ,V̄), etc., as the vectorsn(t), cT , etc. In the
multicomponent case, the species can be indicated by means
of an additional index in all of these functions. Thus, we
speak ofna(r ,V̄;t) (a51,2, . . . ,n) as the concentration of
particles of speciea in (r ,V̄) at time t, of cTa(r ,V̄) as the
pair potential between the tracer and one particle of species
a in (r , V̄), etc. In this manner, wherever we integrate over
common position and orientation variables, we should also
sum over the common species index. Thus, the inner product

‘‘ s ’’ now implies ‘‘(a51
n *d3r*dV̄.’’ With this understand-

ing, all the derivations and results in this paper extend to
multicomponent suspensions.

VI. LONG TIMES

Let us now write some results that may be useful when
particular time regimes are considered. The generalized
Langevin equation that we have just derived, Eq.~51!, de-

scribes the relaxation ofV
⇒
(t) at all time regimes referring to

the relaxation timetB of the tracer’s velocity by hydrody-
namic friction. The relevant time scales in many experi-
ments, however, are associated with the direct interactions,
and are concerned with the relaxation time of the function

D z
⇔
(t). Leaving aside possible anomalous conditions in

which D z
⇔
(t) does not decay sufficiently fast~long-time

tails!, the relaxation ofD z
⇔
(t) defines a characteristic relax-

ation time, denoted ast I (@tB), such that for asymptotically

long timest@t I , the decay ofV
⇒
(t) can be described by a

simpler form of the generalized Langevin equation, in which

D z
⇔
(t) is approximated by

D z
⇔

~ t !5D z
⇔
2d~ t !, ~57!

where the tensorD z
⇔

~without temporal argument! is defined
as

D z
⇔

[E
0

`

D z
⇔

~ t !dt. ~58!

Using Eq.~57! in Eq. ~51!, we have the so-called Markovian
limit, in which the GLE becomes

M
⇔
•

dV
⇒

~ t !

dt
52 z

⇔
•V

⇒
~ t !1 f

⇒
~ t !, ~59!

with

z
⇔

5z0
⇔

1D z
⇔
, ~60!

and with

f
⇒

~ t !5f 0
⇒

~ t !1F
⇒

~ t !, ~61!

satisfying

^ f
⇒

~ t ! f
⇒
†~0!&5kBTz

⇔
2d~ t !. ~62!

Thus, we see that in this limit, the description of the Brown-
ian motion of the interacting tracer is formally identical to
the case of a free tracer@Eqs. ~7! and ~8!#. In some experi-
ments this is the relevant time regime. In such a case, it is

enough to calculateD z
⇔
. Integrating the general results for
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D z
⇔
(t) in Eqs. ~52!, ~55,! and ~56!, we can find general ex-

pressions forD z
⇔
. Note first that from Eqs.~49! and~50!, we

find that

E
0

`

x
'

~ t !dt5s
'

sL
'

21, ~63!

whereL
'

21sL
'

5U
'
, and

L
'

[E
0

`

L
'

~ t !dt. ~64!

Using Eq.~63! in Eqs. ~52!, ~55!, and ~56!, we get the fol-
lowing three exact equivalent expressions for the static fric-

tion tensorD z
⇔
:

D z
⇔

52@“
⇒

cT#ss
'

sL
'

21s@“
⇒
neq#†, ~65!

D z
⇔

5kBT@“
⇒
neq#sL

'
21s@“

⇒
neq#†, ~66!

and

D z
⇔

5b@“
⇒

cT#ss
'

sL
'

21ss
'

s@“
⇒

cT#†. ~67!

From these expressions, the seemingly most convenient one,
in principle, is the ‘‘concentration’’ equation, Eq.~66!, since,
even though it depends onL

'
, it only involvesneq, which is a

static property easier to determine thans
'
. Once again, in

later work we shall make use of some of these results.

VII. SHORT-TIME REGIME

Let us now consider the regime opposite to that discussed
in the previous section. We recall that for short times we
refer to the regimet!t I , but still in the diffusive regime
t@tB . To zeroth order in (t/t I), x

'
(t)5U

'
, and the memory

term in the generalized Langevin equation in Eq.~51! is
negligible. Thus, this equation only differs from Eqs.~7! and
~8!, which describe free diffusion, by the additional term

F
⇒
(t50)5@“

⇒
cT#sdn(0). This is the total force that the

surrounding particles exert on the tracer for a given initial
configuration. On the average, however, this total force van-
ishes, sincê dn(0)&50. Thus, in this regime the tracer
moves, on the average~over initial configurations of the sur-
rounding particles!, as a freely diffusing Brownian particle.
The fact that the averaged effect of the direct interactions
vanishes at short times can be interpreted saying that in this
regime, a ‘‘representative’’ tracer particle undergoes local
Brownian motion at the local minimun of the field of force
exerted by the average ‘‘cage’’ of the surounding particles,
described by the equilibrium profileneq5^n(0)&. Thus, as
long as the tracer particle does not displace itself from this
local minimum, we have free diffussion. The very initial
effects of the direct interactions on the tracer’s motion occur
at first order in (t/t I), where the tracer has displaced itself by

DR
⇒
(t)[*0

t V
⇒
(t8)dt8 from the equilibrium minimum, but the

cage has not yet evolved in time. This first-order effects are
also described by the GLE in Eq.~51!, which, to linear order
in t, reads

M
⇔
•

V
⇒

~ t !

dt
52z0

⇔
•V

⇒
~ t !1f 0

⇒
~ t !2D z

⇔
~0!•DR

⇒
~ t !1F

⇒
~ t !.

~68!

Once again,F
⇒
(t) vanishes on the average@over all possible

realizations ofF
⇒
(t), i.e., over an ensemble of tracer par-

ticles#. Without this last term, Eq.~68! describes Brownian
motion of the tracer particle displaced from the local mini-

mum, by a displacementDR
⇒
(t), and subjected to a ‘‘restor-

ing’’ force linear inDR
⇒
(t). The spring constants of the cor-

responding harmonic potential are precisely the components

of the initial value ofD z
⇔
(t). From Eq. ~68!, we see that

D z
⇔
(0) can be written, in terms only ofcT andn

eq, as

D z
⇔

~0!52@“cT#s@“neq#†. ~69!

This quantity determines the very early deviations~up to
t2), from its initial linear~free diffusion! dependence of the

generalized mean-squared displacement^DR
⇒
(t)DR

⇒
†(t)& on

time. If a well-defined separation of time scales exists for a
given system~i.e., if t!t I), in such a way that the free-
diffussion regimetB!t!t I can be observed, then the initial

linear behavior of̂ DR
⇒
(t)DR

⇒
†(t)& will determine the phe-

nomenological parameters involved inz0
⇔

@since the corre-

sponding short-time diffusion coefficientsD0
⇔

will be related

to (z0
⇔
)21]. In addition, the very early departure from this

short-time, or free diffusion regime will appear at ordert2 in

^DR
⇒
(t)DR

⇒
†(t)&, and will be related toD z

⇔
(0). How useful

these observations can be in practice will depend, of course,
on the particular system and on the specific experimental
approach employed to monitor the averaged motion of the
tracer particles. In principle, light scattering or video micros-
copy could be tunned to measure those short-time properties
~as has been the case for spherical particles!. In the most
general case, however, it may be that the experimental mea-
surement records time-dependent correlation functions dif-

ferent from ^DR
⇒
(t)DR

⇒
†(t)&, which is defined in terms of

V
⇒
(t), which, in its turn, is best described in the reference

frame with orientation following the tracer particle’s orien-
tation. Thus, additional work must be made to find the ap-
propriate connection between the measurable time-dependent

correlation functions and̂DR
⇒
(t)DR

⇒
†(t)&, or ^V

⇒
(t)V

⇒
(0)†&.

In the meanwhile, computer simulations should provide a
useful test of the general scenario for the short-time diffusion
properties just described.
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Of course, computer simulations, light scattering, or video
microscopy are also in principle capable of describing the
dynamics at a time regime beyond the one just described, i.e,
at timest't I . For this intermediate regime, the short-time
expansion is no longer useful, and the full time dependence

of D z
⇔
(t) is required. The determination ofD z

⇔
(t), however,

must wait until we introduce approximations, such as those
that will be defined in the following paper. Recalling, how-
ever, that in the context of suspensions of spherical particles
a very useful strategy@4# has been to approximate by an
exponential function the memory function corresponding es-

sentially to D z
⇔
(t), it is worthwhile to indicate a general

result for D z
⇔
(1)(0)[@dD z

⇔
(t)/dt# t50 . From D z

⇔
(0) and

D z
⇔
(1)(0), such a simple approximation forD z

⇔
(t) could be

defined. From Eq.~52!, we have that

D z
⇔

~1!~0!52@“cT#sx
'

~1!~ t !s@“neq#†, ~70!

and from Eq.~49! we find that

x
'

~1!~ t ![ Sdx
'

~ t !

dt
D
t50

5L
'
0ss

'
21, ~71!

where we have assumed~extending what is well established
in the context of spherical particles! that L

'
(t) has a tempo-

rally local termL
'
02d(t), such that

L
'

~ t !5L
'
02d~ t !1DL

'
~ t !, ~72!

whereDL
'
(t) embodies the dynamic effects of the direct in-

teractions among the particles of the suspension. At this
point, these results constitute another aspect of our present
general discussion. We expect that they will be useful in
further developments of the present theory, which might par-
allel those that occurred in the more restricted case of sus-
pensions of spherical particles.

VIII. A RELEVANT GENERIC SYSTEM

Besides being exact, in the sense that we have not yet
introduced approximations inx

'
(t) @or, equivalently, in

L
'
(t)], our results are also still general. Thus, they should

apply to the general condition involving a nonspherical

tracer interacting with other nonspherical particles of a mul-
ticomponent suspension. In order to apply these results to
concrete systems, it is convenient to retrict ourselves to sys-
tems that present some of the complexities, but not all, that
are involved in the most general case. One possibility is to
consider a generic system with a higher degree of symmetry
in the interparticle interactions. The simplest such generic
system corresponds to that in which only the tracer particle
remains nonspherical, while the other particles are spherical.
By this we mean that the interactionuab(r ,V̄;r 8,V̄8) be-
tween two of the latter~of speciesa,b51,2, . . . ,n) does not
depend on their orientationsV̄ and V̄8, and that the pair
potentialcT(r ,V̄) between the tracer and one of those par-
ticles of speciesa does not depend on the orientation of the
latter, but only on its relative positionr with respect to the
center of mass of the tracer, whose~fixed! orientation, how-
ever, does matter. Thus, for this generic system,
uab(r ,V̄;r 8,V̄8)5uab(ur2r u) and cTa(r ,V̄)5cTa(r ), and
the local concentration profilena

eq(r ,V̄) is also independent
of V̄, and can be written asna

eq(r ,V̄)5na
eq(r )/V where

V[*dV̄. In general we have implicitly assumed that
na
eq(r ,V̄) is normalized in such a way that

*dr*dV̄na
eq(r ,V̄)5Na , such thatNa is the total number of

particles in volume V, and that in the bulk
na
eq(r ,V̄)5na /V, with na being the bulk concentration
na[Na /V of speciesa. In addition, for similar reasons, we
must have that s(r ,V̄;r 8,V̄8)5s(r ,r 8)/V2, whereas
sab

21(r ,V̄;r 8,V̄8)5sab
21(r ,r 8)/V2, and xab(r ,V̄;r 8,V̄8;t)

5xab(r ,r 8;t)/V
2.

With this understanding, it is not difficult to see that all
the results in this paper are to be read, for this generic sys-
tem, just as they are, provided that forcT , n

eq, s
'
, and

x
'
(t) we understand the vectors and matrices with

orientation-independent componentscTa(r ), na(r ),
sab(r ,r 8), and xab(r ,r 8;t), and that the inner product
‘‘ s’’ only indicates ‘‘(a51

n *d3r .’’ In addition, since

@]cT(r ,V̄)/]fW #5@]na
eq(r ,V̄)/]fW #50, the operator“ rot is

just “ rot5r3“. As a result, for this generic system, al-
though the GLE in Eq.~51! exhibits no notational modifica-
tion, the other main results of this paper, namely, the expres-

sions forD z
⇔
(t), can be written in a simpler manner. For

example, the ‘‘concentration’’ and the ‘‘force’’ equations in
Eqs.~55! and ~56! now read, respectively,

D z
⇔

~ t !5kBTE d3r 1E d3r 2E d3r 3F S “1

r13“1D neq~r1!Gs21~r1 ,r2!x~r2 ,r3 ;t !@~“3 ,r33“3!n
eq~r3!#, ~73!

and

D z
⇔

~ t !5bE d3r 1E d3r 2E d3r 3F S “1

r13“1D cT~r1!Gx~r1 ,r2 ;t !s~r2 ,r3!@~“3 ,r33“3!cT~r3!#. ~74!
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These are the results from which we shall start our discussion
in the following paper on the application of our theory to this
generic system. Once again, these results are still exact, but
they are the most general only in the context of the generic
system considered. Other generic systems may also be con-
sidered~for example, a spherical tracer diffusing in a suspen-
sion of nonspherical particles!. The one described here, how-
ever, will be used immediately as a simple prototype that
will allow us to explain the protocol to be followed in apply-
ing our theory to concrete systems and conditions.

IX. CONCLUSIONS

Here we have presented the formal derivation of the GLE
that describes the Brownian motion of a nonspherical tracer
particle that interacts with other diffusing particles in a sus-
pension, which are in general nonspherical, and of different
species. This is Eq.~51! of Sec. V. A relevant aspect of this
result is the fluctuation-dissipation relation in Eq.~54!. How-
ever, the most important result is the exact and general ex-
pression derived for the time-dependent friction tensor

D z
⇔
(t) in Eq. ~52!, or its alternative expressions in Eqs.~55!

and ~56! ~the ‘‘concentration’’ and the ‘‘force’’ equations!.
These are expressions in terms of equilibrium static proper-
ties @na

eq(r ,V̄) and sab(r ,V̄,r 8,V̄8)] and of the collective
diffusion propagatorxab(r ,V̄,r 8,V̄8;t) @or through Eq.~49!,
of the time-dependent diffusion kernelLab(r ,V̄,r 8,V̄8;t)].
The latter is still to be determined in an approximate manner,
and in the context of a concrete application. For the time
being, we also included in this paper results referring to the
long-time and to the short-time regimes~Secs. VI and VII!.
These are equally formal results, that we shall refer to in
future applications of the general theoretical framework es-
tablished in this paper. In preparation for the first such ap-
plication, in the previous section we wrote explicitly how

these general results simplify when particular restricting
symmetries are introduced in the definition of a generic sys-
tem. While the following paper, that deals with such generic
system, will start from these still exact but less general re-
sults, future applications@17# to systems outside that generic
case will force us to go back to the most general formulation
of the theory. This justifies having developed a formal but
general framework, from which a number of possible appli-
cations will branch. Paper II contains the first and most in-
mediate of such branches. As a final remark, let us mention
that the GLE approach presented here leads to results for the
tracer-diffusion properties, which turn out to be equivalent to
results derived starting from the Fokker-Planck or the
Smoluchowski equation. An example will be given in the
following paper, where we will show that Hess and Klein’s
result for self-diffusion of spherical particles~whose deriva-
tion starts from the many-particle Fokker-Planck equation!
follows as a particular result of the GLE theory. This should
not be surprising, since at least in the absence of hydrody-
namic interactions, the statistical information contained in
the many-particle Fokker-Planck equation is the same as that
contained in the many-particle Langevin equation. Thus, Eq.
~2! @or its extended version in Eq.~15!# is just one of the
~N11! coupled Langevin equations, except that it is written
in the precise form needed to proceed with our method.
Spelling out the equivalences and differences with other ap-
proaches is indeed an interesting topic, which falls, however,
outside the scope and length of the present paper. In this
regard, we refer the reader to a recent paper,@29#, where
some of these topics are discussed in more detail.
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